
Keep CALM and CRDT On
Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks, and Joseph M. Hellerstein.

Keep CALM and CRDT On. PVLDB, 16(4): 856 - 863, 2022

PWL Bangalore – 19th Oct. 2023

Logo from https://crdt.tech/

https://www.vldb.org/pvldb/vol16/p856-power.pdf
https://www.vldb.org/pvldb/vol16/p856-power.pdf
https://crdt.tech/

$ whoami

What is coordination?

“Knowledge Is The Dual of Possibility.”

J. Halpern et al. Knowledge and Common Knowledge In A Distributed Environment

https://arxiv.org/pdf/cs/0006009.pdf

What is coordination?

“Knowledge Is The Dual of Possibility.”

J. Halpern et al. Knowledge and Common Knowledge In A Distributed Environment

httsps://www.youtube.com/watch?v=7U0qPmEpbSI&list=WL&index=21

https://arxiv.org/pdf/cs/0006009.pdf
https://www.youtube.com/watch?v=7U0qPmEpbSI&list=WL&index=21

What is coordination?

What is coordination?

What is coordination?

What is coordination?

What is coordination?

What is coordination?

What is coordination?

There’s also message re-ordering, network partitions and all other flavours of why
distributed systems are hard.

What is coordination?

We also have other coordination mechanisms like 2PC.

What is coordination?

● In any case, coordination mechanisms are a way to synchronize access to a shared memory of

some sort.

● They are probably the most well studied class of algorithms in Distributed Systems literature.

Downside of coordination

Coordination mechanisms have massive performance costs attached to them.

“The first principle of successful scalability is to batter the consistency mechanisms down to a minimum, move them off the

critical path, hide them in a rarely visited corner of the system, and then make it as hard as possible for application developers

to get permission to use them”

James Hamilton, SVP and Distinguished Engineer at AWS

Downside of coordination

Intuition from Universal Scalability Law (USL).

● Linear scalability is a sham.

● As work done to achieve data consistency

(“coherency”) increases, it starts to bottleneck

your system’s throughput.

http://www.perfdynamics.com/Manifesto/USLscalability.html

http://www.perfdynamics.com/Manifesto/USLscalability.html

Downside of coordination

Can we avoid coordination?

Can we avoid coordination?

“The first principle of successful scalability is to batter the consistency mechanisms down to a

minimum, move them off the critical path, hide them in a rarely visited corner of the system, and then

make it as hard as possible for application developers to get permission to use them”

James Hamilton, SVP and Distinguished Engineer at AWS

Can we avoid coordination?

A significant amount of non-determinism exists

in distributed systems – uncoordinated parallel

execution on unreliable machines, message

order delivery, network failures, network

partitions etc.

Can we avoid coordination?

In an attempt to tame this non-determinism, we

try and coordinate, we try and accumulate as

much knowledge as possible about what the

global state of the system might look like, and

then take an action based on that.

Can we avoid coordination?

We coordinate in hopes of providing some

guarantees for our system, guarantees which

can be bucketed broadly as:

● Recency guarantees (ex: linearizability)

● Ordering guarantees (ex: sequential

consistency, serializability).

Can we avoid coordination?

One way of avoiding coordination in

transactional database systems is using

invariants. If a local transaction can be shown to

not violate a global invariant, we can avoid

coordinating on this transaction.

Invariant confluence.

Can we avoid coordination?

But this is for transactional database systems.

Can we generalize this further?

Can we avoid coordination?

● Ultimately, we coordinate to achieve

memory consistency.

Can we avoid coordination?

● Ultimately, we coordinate to achieve

memory consistency.

Can we avoid coordination?

● Ultimately, we coordinate to achieve

memory consistency.

● And its memory consistency that stands the

risk of being violated by all the

non-determinism we spoke about.

Can we avoid coordination?

● But what if we move our focus from memory

consistency to something called

application-level consistency?

Can we avoid coordination?

● But what if we move our focus from memory

consistency to something called

application-level consistency?

● Can my program produce deterministic outputs

despite non-determinism in the underlying

distributed runtime?

Program Confluence.

Can we avoid coordination?

● But what if we move our focus from memory

consistency to something called

application-level consistency?

● Can my program produce deterministic outputs

despite non-determinism in the underlying

distributed runtime?

Program Confluence.

Can we avoid coordination?

Program confluence is pretty cool, but can we

define a class of programs that are program

confluent? A mental framework?

Can we avoid coordination?

Let’s take a few examples!

Can we avoid coordination?

Clarification

● “Avoiding coordination” does not mean machines never talk to each other at all.

● Machines communicate periodically – kind of like gossip.

○ More on the frequency of communication later.

● It’s just that for each request, a blocking, potentially sequential, throughput reducing operation is not

done.

● Avoiding coordination == can we safely execute a request/query without it being blocking, sequential,

throughput reducing?

Can we avoid coordination?
Example 1 – Distributed Deadlock Detection

Can we avoid coordination?
Example 1 – Distributed Deadlock Detection

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?
Example 1 – Distributed Deadlock Detection

● Goal is to detect “waits-for” cycles, cycles that can span

multiple machines.

● Each machine has a subset of edges in a global waits-for graph.

● Information is accumulated by machines sharing edges with

each other.

● Eventually, all machines will have a consistent view of the

global waits-for graph.

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?
Example 1 – Distributed Deadlock Detection

● However, at any point of time, based on the information a

machine has accumulated so far, cycles can emerge even

without knowing the global view of the graph.

● As and when these cycles emerge, can a local deadlock

detector confidently declare that a deadlock has occurred?

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?
Example 1 – Distributed Deadlock Detection

● Turns out it can! But what about race conditions? What if

information that we don’t yet know, change our decision of

having detected a deadlock? Do I need to coordinate with

other nodes before declaring a deadlock?

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?
Example 1 – Distributed Deadlock Detection

● Turns out it can! But what about race conditions? What if

information that we don’t yet know, change our decision of

having detected a deadlock? Do I need to coordinate with

other nodes before declaring a deadlock?

● No need to coordinate. Any decision declared based on

partial/local state is still valid. Partial information in this case is

always an under-approximation of the global state. From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?
Example 2 – Distributed Garbage Collection

Can we avoid coordination?
Example 2 – Distributed Garbage Collection

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?
Example 2 – Distributed Garbage Collection

● Goal is to detect objects that are disconnected from “root”.

● Again, references to objects can span multiple machines.

● A machine’s local view contains only a subset of edges of the

global reference graph.

● As before, machines exchange their local copies of edges to

accumulate information.

● Eventually, all machines will have a consistent view of the

global reference graph.

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?
Example 2 – Distributed Garbage Collection

● However, if at any point, a machine detects that a local object

is disconnected from the root, can it declare that this is

garbage and deallocate it?

● Can a local garbage collector make decisions to deallocate

local objects without complete view of the global reference

graph? Can we avoid coordination?

● What about race conditions? Can information we don’t yet

know cause us to change our mind?

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?
Example 2 – Distributed Garbage Collection

● In this case, we need to coordinate!

● The reason for this is that a decision made on incomplete

information can be invalidated by arrival of new information.

● The local state is not an under-approximation of the global

state.

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?

Question: What is the family of problems that can be

consistently computed in a distributed fashion without

coordination, and what problems lie outside that

family?

Can we avoid coordination?

Theorem 1: Consistency As Logical Monotonicity (CALM). A

program has a consistent, coordination-free distributed

implementation if and only if it is monotonic.

Can we avoid coordination?

Theorem 1: Consistency As Logical Monotonicity (CALM). A

program has a consistent, coordination-free distributed

implementation if and only if it is monotonic.

“Reasoners draw conclusions defeasibly when they reserve the right to

retract them in the light of further information”

Non-monotonic Logic, Stanford Encyclopedia of Philosophy

(https://plato.stanford.edu/entries/logic-nonmonotonic/)

https://plato.stanford.edu/entries/logic-nonmonotonic/

Can we avoid coordination?

Theorem 1: Consistency As Logical Monotonicity (CALM). A

program has a consistent, coordination-free distributed

implementation if and only if it is monotonic.

Definition 1: A program P is monotonic if for any input sets S,T

where S ⊆ T, P(S) ⊆ P(T).

Can we avoid coordination?

● Remember – the need to coordinate arises from an intrinsic need to gather missing information.

Can we avoid coordination?

● Remember – the need to coordinate arises from an intrinsic need to gather missing information.

● As a result, monotonic programs are “safe” in the face of missing information and can proceed without

coordination.

Can we avoid coordination?

● Remember – the need to coordinate arises from an intrinsic need to gather missing information.

● As a result, monotonic programs are “safe” in the face of missing information and can proceed without

coordination.

● Non-monotonic programs on the other hand tend to “change their mind” in the face of new information,

they need to ensure they know the global state before taking any decisions.

Can we avoid coordination?

● Remember – the need to coordinate arises from an intrinsic need to gather missing information.

● As a result, monotonic programs are “safe” in the face of missing information and can proceed without

coordination.

● Non-monotonic programs on the other hand tend to “change their mind” in the face of new information,

they need to ensure they know the global state before taking any decisions.

● Additionally, because non-monotonicity leads to “change in mind”, they are also sensitive to the order in

which inputs are processed – another intrinsic motivator for coordination. Monotonic programs are

immune to this as well! They only care about the content of inputs, not the order.

Interlude – CRDTs, a primer.

CRDTs

Note: this hopes to be an intuitive introduction to CRDTs, resources for a more concrete and

mathematically sound introduction to CRDTs are linked towards the end!

CRDTs

● Conflict Free Replicated Datatypes.

● These are replicated structures that provide

guarantees to be eventually consistent without

the need for coordination.

CRDTs

● Conflict Free Replicated Datatypes.

● These are replicated structures that provide

guarantees to be eventually consistent without

the need for coordination.

● Replicas gossip their state and all become

consistent eventually.

CRDTs

● These are called state-based CRDTs, there’s

also something called operation-based CRDTs.

● We will only talk about state-based CRDTs

today to simplify things.

CRDTs
To understand CRDTs, let’s understand how its API is defined:

CRDTs
To understand CRDTs, let’s understand how its API is defined:

● Each function is executed locally.

CRDTs
To understand CRDTs, let’s understand how its API is defined:

● Each function is executed locally.

● op: Clients use this to modify the state of the CRDT. Must be

monotonic.

CRDTs
To understand CRDTs, let’s understand how its API is defined:

● Each function is executed locally.

● op: Clients use this to modify the state of the CRDT. Must be

monotonic.

● query: Does not modify state, only returns some result that

might depend on state.

CRDTs
To understand CRDTs, let’s understand how its API is defined:

● Each function is executed locally.

● op: Clients use this to modify the state of the CRDT. Must be

monotonic.

● query: Does not modify state, only returns some result that

might depend on state.

● merge: Takes a value, merges it with existing state and

produces new state. Must be Associative, Commutative and

Idempotent (ACI).

CRDTs
merge: Takes a value, merges it with existing state and produces

new state. Must be Associative, Commutative and Idempotent

(ACI).

If & is the merge function and a, b, c are updates to the CRDT

state:

Associative: a & (b & c) = (a & b) & c

Commutative: a & b = b & a

Idempotent: a & a = a

CRDTs
CRDT example: a grow-only replicated set of values

● We have a shopping cart that (for now) users can only add

values to.

● The contents of this shopping cart are replicated for latency

and availability purposes.

CRDTs
CRDT example: a grow-only replicated set of values

● We have a shopping cart that (for now) users can only add

values to.

● The contents of this shopping cart are replicated for latency

and availability purposes.

CRDTs
CRDT example: a grow-only replicated set of values

● We have a shopping cart that (for now) users can only add

values to.

● The contents of this shopping cart are replicated for latency

and availability purposes.

CRDTs
API for this CRDT:

● op: add(item T) { adds.insert(item) }

CRDTs
API for this CRDT:

● op: add(item T) { adds.insert(item) }

● query: read() []T { return adds }

CRDTs
API for this CRDT:

● op: add(item T) { adds.insert(item) }

● query: read() []T { return adds }

● merge: union(item) { adds.union(item) }

CRDTs
API for this CRDT:

merge: union(item)

If & = union is the merge function and x, y, z are additions to

the set:

Associative: x & (y & z) = (x & y) & z

 = {x, y, z}

Commutative: x & y = y & x = {x, y}

Idempotent: x & x = {x}

CRDTs
Mathematically, you can represent this CRDT as:

({x, y, z}, &)

CRDTs
Mathematically, you can represent this CRDT as:

({x, y, z}, &)

The only way is up.

Popularity of CRDTs

Popularity of CRDTs

● Used as building blocks by distributed systems developers: Akka, Dynamo, Redis.

● Used by industry – PayPal, League of Legends, FlightTracker (inside Meta).

● Used in collaborative document editing.

Why The Popularity of CRDTs?

Why The Popularity of CRDTs?

● An easy to explain API.

● A promise of formal safety guarantees (eventual convergence) – its attractive to latch onto “guaranteed to

converge, all replicas eventually consistent”

● Helps deal with non-determinism that comes with eventually consistent systems: re-ordering,

duplication, late-arriving updates – ACI merge function handles that!

A Few Gotchas

A Few Gotchas
“guaranteed to converge, all replicas eventually consistent”

● Because CRDTs have become so popular, it starts becoming

simpler to misread what the actual guarantees provided by

CRDTs are.

A Few Gotchas
“guaranteed to converge, all replicas eventually consistent”

● Because CRDTs have become so popular, it starts becoming

simpler to misread what the actual guarantees provided by

CRDTs are.

● This is a storage guarantee. This is not a guarantee that is

provided to readers of the state of CRDTs.

A Few Gotchas
So as a developer, if I wanted to have such guarantees for reading

state as well:

A Few Gotchas
So as a developer, if I wanted to have such guarantees for reading

state as well:

● I understand the system is eventual, I’ve accepted stale reads.

A Few Gotchas
So as a developer, if I wanted to have such guarantees for reading

state as well:

● I understand the system is eventual, I’ve accepted stale reads.

● However, if I’m getting the guarantee of no coordination, I

expect my reads to never go back in time, otherwise I’ll have to

coordinate.

A Few Gotchas
So as a developer, if I wanted to have such guarantees for reading

state as well:

● I understand the system is eventual, I’ve accepted stale reads.

● However, if I’m getting the guarantee of no coordination, I

expect my reads to never go back in time, otherwise I’ll have to

coordinate.

● Because I am not coordinating, I also expect no anomalies in

my state – all conflicts are handled. The system is basically

equivalent to some sequential execution.

A Few Gotchas
Wait…

Am I expecting sequential consistency?

A Few Gotchas

However, CRDTs by themselves provide no such guarantees to readers.

A Few Gotchas

A Few Gotchas

● What if I decide that a Ferrari is probably not the best

purchase and I want to remove it from my cart?

● Deletions from a set violate monotonicity, we are going back

on our state of world!

A Few Gotchas

● What if I decide that a Ferrari is probably not the best

purchase and I want to remove it from my cart?

● Deletions from a set violate monotonicity, we are going back

on our state of world!

● Another grow-only set but for deletions?

A Few Gotchas

● What if I decide that a Ferrari is probably not the best

purchase and I want to remove it from my cart?

● Deletions from a set violate monotonicity, we are going back

on our state of world!

● Another grow-only set but for deletions?

A Few Gotchas

● What if I decide that a Ferrari is probably not the best

purchase and I want to remove it from my cart?

● Deletions from a set violate monotonicity, we are going back

on our state of world!

● Another grow-only set but for deletions?

A Few Gotchas
API for this CRDT:

A Few Gotchas
API for this CRDT:

op:

add(item T) { adds.insert(item) }

del(item T) { dels.insert(item) }

query:

read() []T {

return adds.difference(dels)
}
merge:

union(addItem, delItem) {
adds.union(addItem)
dels.union(delItem)

}

A Few Gotchas

● CRDTs provide mathematically sound guarantees for

convergence.

● Or in other words, they provide guarantees for liveness.

● But this guarantees is only for updates. CRDTs provide no APIs

or guarantees for visibility into the state (reads).

● No guarantees for safety when reading state!

A Few Gotchas

● CRDTs provide mathematically sound guarantees for

convergence.

● Or in other words, they provide guarantees for liveness.

● But this guarantees is only for updates. CRDTs provide no APIs

or guarantees for visibility into the state (reads).

● No guarantees for safety when reading state!

A Few Gotchas

● CRDTs provide mathematically sound guarantees for

convergence.

● Or in other words, they provide guarantees for liveness.

● But this guarantees is only for updates. CRDTs provide no APIs

or guarantees for visibility into the state (reads).

● No guarantees for safety when reading state!

A Few Gotchas

● CRDTs provide mathematically sound guarantees for

convergence.

● Or in other words, they provide guarantees for liveness.

● But this guarantees is only for updates. CRDTs provide no APIs

or guarantees for visibility into the state (reads).

● No guarantees for safety when reading state! ��

A Few Gotchas

● How about we wait for all updates to arrive before processing

a checkout (read) request?

��

A Few Gotchas

● How about we wait for all updates to arrive before processing

a checkout (read) request?

● Need to know what updates are present on other nodes.

��

A Few Gotchas

● How about we wait for all updates to arrive before processing

a checkout (read) request?

● Need to know what updates are present on other nodes.

● Maybe we can ask other nodes?

��

A Few Gotchas

● How about we wait for all updates to arrive before processing

a checkout (read) request?

● Need to know what updates are present on other nodes.

● Maybe we can ask other nodes?

● Hold on…

We’re back in coordination land!

�� �
���

�� ��

A Few Gotchas

● CRDTs are guaranteed to be consistent as long as they are not

observed.

��

A Few Gotchas

● CRDTs are guaranteed to be consistent as long as they are not

observed.

CRDTs provide Schrödinger Consistency Guarantees

🐈 ��

A Few Gotchas

● Why is that the case? Why did we end up back in coordination

land?

● Reads are ANNOYING!

● Reads don’t usually commute with other operations.

del(ferrari) -> {potato} – {ferrari} !=

{potato, ferrari} – {} -> del(ferrari)

A Few Gotchas

● Why is that the case? Why did we end up back in coordination

land?

● Reads are ANNOYING!

● Reads don’t usually commute with other operations.

del(ferrari) -> {potato, ferrari} – {ferrari} !=

{potato, ferrari} – {} -> del(ferrari)

We cannot reorder set difference (read())!

Meaning we need to synchronize access.

Leading to need for coordination.

A Few Gotchas

● If we can somehow get that read to commute, we won’t have

to coordinate.

A Few Gotchas

● If we can somehow get that read to commute, we won’t have

to coordinate.

● Here’s the thing… the reason it does not commute is because

the output of our query (read()) is not stable.

A Few Gotchas

● If we can somehow get that read to commute, we won’t have

to coordinate.

● Here’s the thing… the reason it does not commute is because

the output of our query (read()) is not stable.

● Query can go back on what it outputted to be true at some

point based on the updates it receives.

A Few Gotchas

● If we can somehow get that read to commute, we won’t have

to coordinate.

● Here’s the thing… the reason it does not commute is because

the output of our query (read()) is not stable.

● Query can go back on what it outputted to be true at some

point based on the updates it receives.

● In other words, without coordination, we output not just stale

but false information.

A Few Gotchas

● If outputs of a read query never retract what they have

previously outputted, the query is stable.

● The worst case is you output (arbitrarily) stale information

with new updates, but you will never output false information.

A Few Gotchas

● This is starting to sound familiar…

A Few Gotchas

● This is starting to sound familiar…

MONOTONICITY TO THE RESCUE!

Keep CALM And CRDT On

● Here’s the big idea…

● Along with a monotonic op, if a query is also monotonic, we can provide liveness AND safety guarantees for distributed execution

over CRDTs.

Monotonic queries are queries whose output only ever ”grows” with additional updates.

Keep CALM and CRDT On
“[…] can we develop a query model that makes it possible to precisely

define when execution on a single replica yields consistent results?”

Keep CALM and CRDT On
“[…] can we develop a query model that makes it possible to precisely

define when execution on a single replica yields consistent results?”

● Helps identify what developers must reason about when using

CRDTs.

Keep CALM and CRDT On
“[…] can we develop a query model that makes it possible to precisely

define when execution on a single replica yields consistent results?”

● Helps identify what developers must reason about when using

CRDTs.

● Enables building data systems that manage CRDT replication

and query execution, leading to stronger consistency

guarantees.

Towards A Query Model For CRDTs
Proposed query model for CRDTs:

Towards A Query Model For CRDTs
Proposed query model for CRDTs:

● Safety: Queries should be sequentially consistent,

regardless of the replica at which they are evaluated.

Towards A Query Model For CRDTs
Proposed query model for CRDTs:

● Safety: Queries should be sequentially consistent,

regardless of the replica at which they are evaluated.

● Efficiency: Queries should be evaluated locally without

coordination whenever possible.

Towards A Query Model For CRDTs
Proposed query model for CRDTs:

● Safety: Queries should be sequentially consistent,

regardless of the replica at which they are evaluated.

● Efficiency: Queries should be evaluated locally without

coordination whenever possible.

● Simplicity: The query model should be easy for developers

to reason about.

Towards A Query Model For CRDTs
Example queries

Towards A Query Model For CRDTs
Example queries

● Executing query on local replica will always produce a

sequentially consistent result, even without coordination.

Towards A Query Model For CRDTs
Example queries

● Executing query on local replica will always produce a

sequentially consistent result, even without coordination.

● The true value of the query can never change once observed,

even with additional updates.

Towards A Query Model For CRDTs
Example queries

● Executing query on local replica will always produce a

sequentially consistent result, even without coordination.

● The true value of the query can never change once observed,

even with additional updates.

● Local state + some updates = global state

Towards A Query Model For CRDTs
Example queries

● Executing query on local replica will always produce a

sequentially consistent result, even without coordination.

● The true value of the query can never change once observed,

even with additional updates.

● Local state + some updates = global state

● Most importantly: you might read stale information, but you

will never read incorrect information.

Towards A Query Model For CRDTs
Example queries

��

Towards A Query Model For CRDTs
Example queries

● As we saw, we cannot do away with coordination in this case.

● Stale information is also incorrect information.

��

Towards A Query Model For CRDTs

Remember how we said MONOTONICITY TO THE RESCUE?

Towards A Query Model For CRDTs

● The CALM theorem originally is framed for logic programs.

● It applies perfectly well to queries over CRDTs as well!

● We can define a monotone query as any whose output is monotone with respect to ordering of the CRDT.

Towards A Query Model For CRDTs

● The CALM theorem originally is framed for logic programs.

● It applies perfectly well to queries over CRDTs as well!

● We can define a monotone query as any whose output is monotone with respect to ordering of the CRDT.

“By the CALM Theorem, monotone queries over CRDTs are exactly the queries that only need a local view of the

system to be correct!”

Towards A Query Model For CRDTs

“By the CALM Theorem, monotone queries over CRDTs are exactly the queries that only need a local view of the

system to be correct!”

● Not just that, CALM tells that it is only monotone queries that can satisfy this criteria of coordination avoidance.

● Monotone queries meet all criteria of our good query model.

Towards A Query Model For CRDTs

“By the CALM Theorem, monotone queries over CRDTs are exactly the queries that only need a local view of the

system to be correct!”

● Just as monotonic functions compose, monotonic queries compose too! Super powerful.

● Field of monotone queries is large - 4 of the 5 relational algebra operators are monotone.

Towards A Query Model For CRDTs

“By the CALM Theorem, monotone queries over CRDTs are exactly the queries that only need a local view of the

system to be correct!”

● Very simple query model for developers to reason about.

● Understanding definition of CRDTs requires understanding monotonicity for state updates.

● Reasonable for developers to extend this reasoning to queries as well.

● If SQL is used, monotone queries can be syntactically identified – can leverage developer tooling here.

Towards A Query Model For CRDTs

But what about non-monotone queries? Not all business logic can be expressed monotonically.

Towards A Query Model For CRDTs

But what about non-monotone queries? Not all business logic can be expressed monotonically.

● Answer is simple – coordinate!

● However, coordination as well is improved upon here.

● All update operations commute, you need to order sets of updates, not sequences of them.

● We only care about which updates have arrived, and not their order.

● Contrast with Paxos or Raft, which enforces everyone, everywhere sees the same order no matter what.

Towards A Query Model For CRDTs

TL;DR – if the query you make against a CRDT is monotone, you can execute it safely locally without coordination.

If it is not monotone, you will need to coordinate.

Towards A Query Model For CRDTs

Next step: need to map query model to a practical language.

● Need a rich expressions that can manipulate CRDT stat (lattice

structures).

● And syntax that is easily understood and can convey when a

query is monotone or not (to both humans and computers).

Towards A Query Model For CRDTs

Next step: need to map query model to a practical language.

● Need a rich expressions that can manipulate CRDT stat (lattice

structures).

● And syntax that is easily understood and can convey when a

query is monotone or not (to both humans and computers).

A dialect of something already familiar to developers: SQL!

Towards A Query Model For CRDTs

Next step: need to map query model to a practical language.

● Need a rich expressions that can manipulate CRDT stat (lattice

structures).

● And syntax that is easily understood and can convey when a

query is monotone or not (to both humans and computers).

A dialect of something already familiar to developers: SQL!

You can make use of existing proofs in relational algebra:

“If Q is a SELECT-FROM-WHERE query, Q

is monotone.”

Towards A Query Model For CRDTs

● This was our API previously.

● But with a query model and a query language…

● op: Clients use this to modify the state of the CRDT. Must be

monotonic.

● query: Does not modify state, only returns some result that

might depend on state.

● merge: Takes a value, merges it with existing state and

produces new state. Must be Associative, Commutative and

Idempotent (ACI).

Towards A Query Model For CRDTs

● This was our API previously.

● But with a query model and a query language, we no

longer have a pre-defined set of queries.

● op: Clients use this to modify the state of the CRDT. Must be

monotonic.

● query: Does not modify state, only returns some result that

might depend on state.

● merge: Takes a value, merges it with existing state and

produces new state. Must be Associative, Commutative and

Idempotent (ACI).

Building Data Management Systems For CRDTs

● With a query model and language, queries are just

interfaces to the actual datastore.

Building Data Management Systems For CRDTs

● With a query model and language, queries are just interfaces to the actual datastore.

“we propose a shift in perspective from an object-oriented view of CRDTs to a database view of them: breaking

CRDTs up into a query model and a data store that separates their logical and physical representations.”

Building Data Management Systems For CRDTs

● Physical representation of data.

Building Data Management Systems For CRDTs

● Physical representation of data.

● Along with our query model.

Building Data Management Systems For CRDTs

● Physical representation of data.

● Along with our query model.

● We have our application which can then communicate

over the network – like any other data store deployed as

a service.

Building Data Management Systems For CRDTs

● Physical representation of data.

● Along with our query model.

● We have our application which can then communicate

over the network – like any other data store deployed as

a service.

“We believe that this approach can both increase the ease of use of CRDTs, by shifting the responsibility of reasoning about consistency

to the store, and improve the efficiency of applications built on CRDTs, since data stores can make optimization decisions based on the

dynamic workload.”

“But I Reallllly Want A Non-monotone Query”
● From our query model – non-monotone queries need

coordination in order to execute safely. Does that mean I

accept my fate of high latencies and coordination

bottlenecks?

“But I Reallllly Want A Non-monotone Query”
● From our query model – non-monotone queries need

coordination in order to execute safely. Does that mean I

accept my fate of high latencies and coordination

bottlenecks?

● Yes but also no. “Pre-fetch” and “pre-coordinate”.

● Sometimes you might just want weakly consistent

systems, don’t bother with coordination in any case here

then.

“But I Reallllly Want A Non-monotone Query”
● Well… I’m not sure I want weak consistency, if only there

was a way for me to analyze just how eventual, this

eventual consistency is and understand how to better

program against it.

“But I Reallllly Want A Non-monotone Query”
● Well… I’m not sure I want weak consistency, if only there

was a way for me to analyze just how eventual, this

eventual consistency is and understand how to better

program against it.

Resources

● [Main Paper 1] Keep CALM And CRDT On

● [Main Paper 2] Keeping CALM: When Distributed Consistency Is Easy

● [Paper] Coordination Avoidance In Database Systems

● [Paper] Anna: A KVS For Any Scale

● CRDTs

○ [Original Paper] Conflict Free Replicated Data Types

○ [Paper] CRDTs: An Overview (thanks to Lewis Campbell [@LewisCTech] for this resource!)

○ [Talk]A CRDT Primer: Defanging Order Theory

○ [Talk] Strong Eventual Consistency and CRDTs

○ [Talk] Encapsulating replication, high concurrency and consistency with CRDTs

○ [Code] Implementations of a few CRDTs tested against Jepsen, written in Go

● [Paper] How to Make a Correct Multiprocess Program Execute Correctly on a Multiprocessor

● [Paper] Building On Quicksand

● [ACM Queue] Eventual Consistency Today: Limitations, Extensions, and Beyond

● [Talk, Paper] PBS: Probabilistically Bounded Staleness

https://www.vldb.org/pvldb/vol16/p856-power.pdf
https://arxiv.org/pdf/1901.01930.pdf
https://www.vldb.org/pvldb/vol8/p185-bailis.pdf
https://dsf.berkeley.edu/jmh/papers/anna_ieee18.pdf
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
https://arxiv.org/pdf/1806.10254.pdf
https://twitter.com/LewisCTech
https://www.youtube.com/watch?v=OOlnp2bZVRs&t=3s
https://www.microsoft.com/en-us/research/video/strong-eventual-consistency-and-conflict-free-replicated-data-types/
https://www.youtube.com/watch?v=rVRegyQvHqs
https://github.com/MadhavJivrajani/maelstrom-crdts-go
https://lamport.azurewebsites.net/pubs/lamport-how-to-make.pdf
https://arxiv.org/pdf/0909.1788.pdf
https://queue.acm.org/detail.cfm?id=2462076#:~:text=Probabilistically%20Bounded%20Staleness%2C%20or%20PBS,for%20reads%20of%20data%20items.&text=This%20allows%20us%20to%20measure,linearizable%20(or%20regular)%20store.
http://pbs.cs.berkeley.edu/#:~:text=We%20call%20this%20Probabilistically%20Bounded,how%20eventual%20is%20eventual%20consistency%3F

Acknowledgements

Thank you Conor Power (an author of the Keep CALM And CRDT On paper) for helping answer some of my questions, and in great detail!

https://twitter.com/conor_power23

Thank you!

https://nonmonotonic.dev/

https://nonmonotonic.dev/

