vin Cheung, Natacha Crooks, and Jose . Hellerstein.
Keep CALM and CRDT On. PVLDB, 16(4): 856 - 863, 2022

PWL Bangalore - 19th Oct. 2023

https://www.vldb.org/pvldb/vol16/p856-power.pdf
https://www.vldb.org/pvldb/vol16/p856-power.pdf
https://crdt.tech/

S whoami

What is coordination?

“Knowledge Is The Dual of Possibility.”

J. Halpern et al. Knowledge and Common Knowledge In A Distributed Environment

Knowledge and Common Knowledge
in a Distributed Environment*

Joseph Y. Halpern Yoram Moses
IBM Almaden Research Center Department of Applied Mathematics
San Jose, CA 95120 The Weizmann Institute of Science

Rehovot, 76100 ISRAEL

Abstract: Reasoning about knowledge seems to play a fundamental role in distributed
systems. Indeed, such reasoning is a central part of the informal intuitive arguments used
in the design of distributed protocols. Communication in a distributed system can be
viewed as the act of transforming the system’s state of knowledge. This paper presents
a general framework for formalizing and reasoning about knowledge in distributed sys-
tems. We argue that states of knowledge of groups of processors are useful concepts
for the design and analysis of distributed protocols. In particular, distributed knowledge
corresponds to knowledge that is “distributed” among the members of the group, while
common knowledge corresponds to a fact being “publicly known”. The relationship be-
tween common knowledge and a variety of desirable actions in a distributed system is
illustrated. Furthermore, it is shown that, formally speaking, in practical systems com-
mon knowledge cannot be attained. A number of weaker variants of common knowledge
that are attainable in many cases of interest are introduced and investigated.

https://arxiv.org/pdf/cs/0006009.pdf

What is coordination?

“Knowledge Is The Dual of Possibility.”

J. Halpern et al. Knowledge and Common Knowledge In A Distributed Environment

Knowledge and Common Knowledge
in a Distributed Environment*

Joseph Y. Halpern Yoram Moses
IBM Almaden Research Center Department of Applied Mathematics
San Jose, CA 95120 The Weizmann Institute of Science

Rehovot, 76100 ISRAEL

Ineluctable modality of the
distributed

Abstract: Reasoning about knowledge seems to play a fundamental role in distributed On Joseph Halpern's work on

systems. Indeed, such reasoning is a central part of the informal intuitive arguments used knowledge in distributed systems
in the design of distributed protocols. Communication in a distributed system can be
viewed as the act of transforming the system’s state of knowledge. This paper presents

a general framework for formalizing and reasoning about knowledge in distributed sys- ponatar

tems. We argue that states of knowledge of groups of processors are useful concepts

for the design and analysis of distributed protocols. In particular, distributed knowledge N e @O
corresponds to knowledge that is “distributed” among the members of the group, while e e Syatems

common knowledge corresponds to a fact being “publicly known”. The relationship be- e PIRSIWOLOUS g EEED O (=) () Er=
tween common knowledge and a variety of desirable actions in a distributed system is
illustrated. Furthermore, it is shown that, formally speaking, in practical systems com-

mon knowledge cannot be attained. A number of weaker variants of common knowledge . . s . _
that are attainable in many cases of interest are introduced and investigated. httsps://www.youtube.com/watch?v=7U0qPmEpbS|&list=WL &index=21

https://arxiv.org/pdf/cs/0006009.pdf
https://www.youtube.com/watch?v=7U0qPmEpbSI&list=WL&index=21

What is coordination?

What is coordination?

What is coordination?

What is coordination?

X=5

What is coordination?

X=5

X=5

What is coordination?

X=5

X=5

What is coordination?

There’s also message re-ordering, network partitions and all other flavours of why
distributed systems are hard.

What is coordination?

We also have other coordination mechanisms like 2PC.

What is coordination?

e |n any case, coordination mechanisms are a way to synchronize access to a shared memory of
some sort.

e They are probably the most well studied class of algorithms in Distributed Systems literature.

Downside of coordination

Coordination mechanisms have massive performance costs attached to them.

“The first principle of successful scalability is to batter the consistency mechanisms down to a minimum, move them off the
critical path, hide them in a rarely visited corner of the system, and then make it as hard as possible for application developers

to get permission to use them”

James Hamilton, SVP and Distinguished Engineer at AWS

Downside of coordination

Intuition from Universal Scalability Law (USL).

e Linear scalability is a sham.
e As work done to achieve data consistency
(“coherency”) increases, it starts to bottleneck

your system'’s throughput.

System throughput

Load on the system

http://www.perfdynamics.com/Manifesto/USLscalability.html

http://www.perfdynamics.com/Manifesto/USLscalability.html

Downside of coordination

Coordination Avoidance in Database Systems

Peter Bailis, Alan Feketef, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, lon Stoica
UC Berkeley and TUniversity of Sydney

ABSTRACT

Minimizing coordination, or blocking communication between con-
currently executing operations, is key to maximizing scalability,
availability, and high performance in database systems. However,
uninhibited coordination-free execution can compromise applica-
tion correctness, or consistency. When is coordination necessary for
correctness? The classic use of serializable transactions is sufficient
to maintain correctness but is not necessary for all applications,
sacrificing potential scalability. In this paper, we develop a formal
framework, invariant confluence, that determines whether an appli-
cation requires coordination for correct execution. By operating
on application-level invariants over database states (e.g., integrity
constraints), invariant confluence analysis provides a necessary and
sufficient condition for safe, coordination-free execution. When
programmers specify their application invariants, this analysis al-
lows databases to coordinate only when anomalies that might violate
invariants are possible. We analyze the invariant confluence of com-
mon invariants and operations from real-world database systems
(i.e., integrity constraints) and applications and show that many are
invariant confluent and therefore achievable without coordination.
We apply these results to a proof-of-concept coordination-avoiding
database prototype and demonstrate sizable performance gains com-
pared to serializable execution, notably a 25-fold improvement over
prior TPC-C New-Order performance on a 200 server cluster.

level correctness, or consistency.1 In canonic
tion examples, concurrent, coordination-free wi
can result in undesirable and “inconsistent” outs
account balances—application-level anomalie
should prevent. To ensure correct behavior, a da
coordinate the execution of these operations th:
cuted concurrently, could result in inconsistent

This tension between coordination and corre
by the range of database concurrency control
tional database systems, serializable isolation [
operations (transactions) with the illusion of ex
rial order [15]. As long as individual transactio
application state, serializability guarantees cori
ever, each pair of concurrent operations (at le:
a write) can potentially compromise serializat
will require coordination to execute [9,21]. B
the level of reads and writes, serializability ca
vative and may in turn coordinate more than i
for consistency [29, 39, 53, 58]. For example,
can safely and simultaneously retweet Barack
without observing a serial ordering of updates to
In contrast, a range of widely-deployed weaker
coordination to execute but surface read and writ
in turn compromise consistency [2,9,22,48]. W
models, it is up to users to decide when weake

Anna: A KVS For Any Scale

Chenggang Wu #!, Jose M. Faleiro *2, Yihan Lin **3, Joseph M. Hellerstein #*

UC Berkeley
USA
! cgwulcs.berkeley.edu
“hellerstein@berkeley.edu
* Yale University
USA
2 jose.faleiro@yale.edu
** Columbia University
USA
3yihan.lin@columbia.edu

Abstract—Modern cloud providers offer dense hardware with
multiple cores and large memories, hosted in global platforms.
This raises the of i ing hig
software systems that can effectively scale from a single core to
multicore to the globe. Conventional wisdom says that software
designed for one scale point needs to be rewritten when scaling
up by 10—100x [1]. In contrast, we explore how a system can be
architected to scale across many orders of magnitude by design.

‘We explore this challenge in the context of a new key-

also across cores for high performance. Second, to enable
workload scaling, we need to employ multi-master replication
to concurrently serve puts and gets against a single key from
multiple threads.

The next two design requirements followed from our ambi-
tions for performance and generality. To achieve maximum
hardware utilization and performance within a multi-core

hine, our third was to t-fr
that each thread is always doing useful

value store system called Anna: a partitioned, multi-1 ed
system that achieves high performance and icity via wait-
free ion and coordination-fi i Our design rests

on a simple architecture of coordination-free actors that perform
state update via merge of lattice-based composite data structures.
We demonstrate that a wide variety of consistency models can
be i d in this archi e with

smooth fine-grained
far exceeds the state of the art.

and performance that

work (serving requests), and never waiting for other threads for
reasons of consistency or semantics. To that end, coordination
techniques such as locking, consensus protocols or even “lock-
free” retries [7] need to be avoided. Finally, to support a
wide range of application semantics without compromising
our other goals, we require a unified implementation for a

Can we avoid coordination?

Can we avoid coordination?

“The first principle of successful scalability is to batter the consistency mechanisms down to a
minimum, move them off the critical path, hide them in a rarely visited corner of the system, and then

make it as hard as possible for application developers to get permission to use them”

James Hamilton, SVP and Distinguished Engineer at AWS

Can we avoid coordination?

A significant amount of non-determinism exists
in distributed systems - uncoordinated parallel
execution on unreliable machines, message
order delivery, network failures, network

partitions etc.

X=5

Can we avoid coordination?

In an attempt to tame this non-determinism, we
try and coordinate, we try and accumulate as
much knowledge as possible about what the
global state of the system might look like, and

then take an action based on that.

X=7

Can we avoid coordination?

We coordinate in hopes of providing some
guarantees for our system, guarantees which
can be bucketed broadly as:

e Recency guarantees (ex: linearizability)

e Ordering guarantees (ex: sequential

consistency, serializability).

X=7

Can we avoid coordination?

One way of avoiding coordination in

transactional database systems is using
invariants. If a local transaction can be shown to
not violate a global invariant, we can avoid

coordinating on this transaction.

Invariant confluence.

Coordination Avoidance in Database Systems

Peter Bailis, Alan Fekete', Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, lon Stoica
UC Berkeley and TUniversity of Sydney

ABSTRACT

Minimizing coordination, or blocking communication between con-
currently executing operations, is key to maximizing scalability,
availability, and high performance in database systems. However,
uninhibited coordination-free execution can compromise applica-
tion correctness, or consistency. When is coordination necessary for
correctness? The classic use of serializable transactions is sufficient
to maintain cor but is not y for all applications,
sacrificing potential scalability. In this paper, we develop a formal
framework, invariant confluence, that determines whether an appli-
cation requires coordination for correct execution. By operating
on application-level invariants over database states (e.g., integrity
c ints), invariant e analysis provides a necessary and
sufficient condition for safe, coordination-free execution. When
programmers specify their application invariants, this analysis al-
lows databases to coordinate only when anomalies that might violate
invariants are possible. We analyze the invariant confluence of com-
mon invariants and operations from real-world database systems
(i.e., integrity constraints) and applications and show that many are
invariant confluent and therefore achievable without coordination.
‘We apply these results to a proof-of-concept coordination-avoiding
database prototype and demonstrate sizable performance gains com-
pared to serializable execution, notably a 25-fold improvement over
prior TPC-C New-Order performance on a 200 server cluster.

level correctness, or consistency.! In canonical banking applica-
tion examples, concurrent, coordination-free withdrawal operations
can result in und ble and “inconsi " ¢ like negative
account balances—application-level anomalies that the database
should prevent. To ensure correct behavior, a database system must
coordinate the execution of these operations that, if otherwise exe-
cuted concurrently, could result in inconsistent application state.
This tension between coordination and correctness is evidenced
by the range of database concurrency control policies. In tradi-
tional database systems, serializable isolation provides concurrent
operations (transactions) with the illusion of executing in some se-
rial order [15]. As long as individual transactions maintain correct
application state, serializability guarantees correctness [30]. How-
ever, each pair of concurrent operations (at least one of which is
a write) can potentially compromise serializability and therefore
will require coordination to execute [9,21]. By isolating users at
the level of reads and writes, serializability can be overly conser-
vative and may in turn coordinate more than is strictly necessary
for consistency [29, 39,53, 58]. For example, hundreds of users
can safely and simultaneously retweet Barack Obama on Twitter
without observing a serial ordering of updates to the retweet counter.
In contrast, a range of widely-deployed weaker models require less
coordination to execute but surface read and write behavior that may
in turn compromise consistency [2,9,22,48]. With these alternative
models, it is up to users to decide when weakened guarantees are

Can we avoid coordination?

But this is for transactional database systems.

Can we generalize this further?

Coordination Avoidance in Database Systems

Peter Bailis, Alan Fekete', Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, lon Stoica
UC Berkeley and TUniversity of Sydney

ABSTRACT

Minimizing coordination, or blocking communication between con-
currently executing operations, is key to maximizing scalability,
availability, and high performance in database systems. However,
uninhibited coordination-free execution can compromise applica-
tion correctness, or consistency. When is coordination necessary for
correctness? The classic use of serializable transactions is sufficient
to maintain cor but is not y for all applications,
sacrificing potential scalability. In this paper, we develop a formal
framework, invariant confluence, that determines whether an appli-
cation requires coordination for correct execution. By operating
on application-level invariants over database states (e.g., integrity
c ints), invariant e analysis provides a necessary and
sufficient condition for safe, coordination-free execution. When
programmers specify their application invariants, this analysis al-
lows databases to coordinate only when anomalies that might violate
invariants are possible. We analyze the invariant confluence of com-
mon invariants and operations from real-world database systems
(i.e., integrity constraints) and applications and show that many are
invariant confluent and therefore achievable without coordination.
‘We apply these results to a proof-of-concept coordination-avoiding
database prototype and demonstrate sizable performance gains com-
pared to serializable execution, notably a 25-fold improvement over
prior TPC-C New-Order performance on a 200 server cluster.

level correctness, or ccmsisten(:y.l In canonical banking applica-
tion examples, concurrent, coordination-free withdrawal operations
can result in undesirable and “inconsi 7 C like negative
account balances—application-level anomalies that the database
should prevent. To ensure correct behavior, a database system must
coordinate the execution of these operations that, if otherwise exe-
cuted concurrently, could result in inconsistent application state.
This tension between coordination and correctness is evidenced
by the range of database concurrency control policies. In tradi-
tional database systems, serializable isolation provides concurrent
operations (transactions) with the illusion of executing in some se-
rial order [15]. As long as individual transactions maintain correct
application state, serializability guarantees correctness [30]. How-
ever, each pair of concurrent operations (at least one of which is
a write) can potentially compromise serializability and therefore
will require coordination to execute [9,21]. By isolating users at
the level of reads and writes, serializability can be overly conser-
vative and may in turn coordinate more than is strictly necessary
for consistency [29, 39,53, 58]. For example, hundreds of users
can safely and simultaneously retweet Barack Obama on Twitter
without observing a serial ordering of updates to the retweet counter.
In contrast, a range of widely-deployed weaker models require less
coordination to execute but surface read and write behavior that may
in turn compromise consistency [2,9,22,48]. With these alternative
models, it is up to users to decide when weakened guarantees are

Can we avoid coordination?

e Ultimately, we coordinate to achieve

memory consistency.

Can we avoid coordination?

e Ultimately, we coordinate to achieve

memory consistency. [Application

Can we avoid coordination?

Ultimately, we coordinate to achieve
memory consistency.

And its memory consistency that stands the
risk of being violated by all the

non-determinism we spoke about.

Apphcoct;on

Can we avoid coordination?

e But what if we move our focus from memory [Tl
ep ication
consistency to something called .
application-level consistency? A v

Can we avoid coordination?
obj;c:‘:;n;stic /

consistency to something called [Application]

e But what if we move our focus from memory

application-level consistency?

e Can my program produce deterministic outputs '
despite non-determinism in the underlying @ @ @
distributed runtime? v

Program Confluence.

Can we avoid coordination?

But what if we move our focus from memory

consistency to something called
application-level consistency?

Can my program produce deterministic outputs
despite non-determinism in the underlying

distributed runtime?

Program Confluence.

[cs.DC] 26 Jan 2019

Keeping CALM: When Distributed Consistency is Easy

Joseph M. Hellerstein
hellerstein@berkeley.edu
UC Berkeley

1 INTRODUCTION

Nearly all of the software we use today is part of a distributed
system. Apps on your phone participate with hosted services in
the cloud; together they form a distributed system. Hosted services
themselves are massively distributed systems, often running on
machines spread across the globe. “Big data” systems and enterprise
databases are distributed across many machines. Most scientific
computing and machine learning systems work in parallel across
multiple processors. Even legacy desktop operating systems and

pplications like spreadsheets and word p s are tightly inte-
grated with distributed backend services.

Distributed systems are tricky, so their ubiquity should worry
us. Multiple unreliable machines are running in parallel, sending
messages to each other across network links with arbitrary delays.
How can we be confident that our programs do what we want
despite this chaos?

This problem is urgent, but it is not new. The traditional an-
swer has been to reduce this complexity with memory consistency
guarantees: assurances that the accesses to memory (heap vari-
ables, database keys, etc) occur in a controlled fashion. However,

Peter Alvaro
palvaro@cs.ucsc.edu
UC Santa Cruz

simple systems with narrow APIs. Can we avoid coordination more
generally, as Hamilton recommends? When?

Surprisingly, this was an open question in distributed systems
until relatively recently, due to a narrow focus on storage semantics.
‘We can do better by moving up the stack, setting aside incidental
storage details and considering program semantics more holistically.
Before we delve into details, we begin with intuition on what is
desirable and what is possible.

1.2 Stay in Your Lane: The Perfect Freeway

As an analogy, consider driving on a highway during rush hour. If
each car would drive forward independently in its lane at the speed
limit, everything would be fine: the capacity of the highway could
be fully exploited. Unfortunately, there always seem to be drivers
who have other places to go than forward! To prevent two cars
from being in the same place at the same time, we drivers engage
in various forms of coordination when entering traffic, changing
lanes, coming to intersections, etc. We adhere to formal protocols,
including traffic lights and stop signs. We also frequently engage in
ad hoc forms of coordination with neighboring cars by using turn

Can we avoid coordination?
obj;c:‘:;mstic /

[Apphca‘bion j

Program confluence is pretty cool, but can we
define a class of programs that are program

confluent? A mental framework?

Can we avoid coordination?
OD::‘tt:‘:?n‘us‘tic 1 /
[Apphca‘tion j

Let’s take a few examples!

Can we avoid coordination?

Clarification

e “Avoiding coordination” does not mean machines never talk to each other at all.
® Machines communicate periodically - kind of like gossip.

O More on the frequency of communication later.

e It's just that for each request, a blocking, potentially sequential, throughput reducing operation is not

done.

e Avoiding coordination == can we safely execute a request/query without it being blocking, sequential,

throughput reducing?

Can we avoid coordination?

Example 1 - Distributed Deadlock Detection

Can we avoid coordination?

Example 1 - Distributed Deadlock Detection

e

Machine 1 Machine 2 Machine 3

Figure 1: A distributed waits-for graph with replicated
nodes and partitioned edges. There are two cycles here:
one local to Machine 1 ({T1,T;}), and one that spans Ma-
chines 1 and 2 ({T1, Tz}).

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?

Example 1 - Distributed Deadlock Detection

® Goal is to detect “waits-for” cycles, cycles that can span
multiple machines.

® Each machine has a subset of edges in a global waits-for graph.

® [nformation is accumulated by machines sharing edges with

each other.

® Eventually, all machines will have a consistent view of the

global waits-for graph.

| ool [ee

Machine 1 Machine 2 Machine 3

5

Figure 1: A distributed waits-for graph with replicated
nodes and partitioned edges. There are two cycles here:
one local to Machine 1 ({T1,T;}), and one that spans Ma-
chines 1 and 2 ({Ty, T3}).

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?

Example 1 - Distributed Deadlock Detection

® However, at any point of time, based on the information a

machine has accumulated so far, cycles can emerge even

without knowing the global view of the graph.

® As and when these cycles emerge, can a local deadlock

detector confidently declare that a deadlock has occurred?

| ool [ee

Machine 1 Machine 2 Machine 3

5

Figure 1: A distributed waits-for graph with replicated
nodes and partitioned edges. There are two cycles here:
one local to Machine 1 ({T1,T;}), and one that spans Ma-
chines 1 and 2 ({Ty, T3}).

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?

Example 1 - Distributed Deadlock Detection

® Turns out it can! But what about race conditions? What if

information that we don’'t yet know, change our decision of
having detected a deadlock? Do | need to coordinate with

other nodes before declaring a deadlock?

o

| ool [ee

Machine 1 Machine 2 Machine 3

Figure 1: A distributed waits-for graph with replicated
nodes and partitioned edges. There are two cycles here:
one local to Machine 1 ({T1,T;}), and one that spans Ma-
chines 1 and 2 ({Ty, T3}).

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?

Example 1 - Distributed Deadlock Detection

® Turns out it can! But what about race conditions? What if

information that we don’t yet know, change our decision of
having detected a deadlock? Do | need to coordinate with

other nodes before declaring a deadlock?

® No need to coordinate. Any decision declared based on

partial/local state is still valid. Partial information in this case is

always an under-approximation of the global state.

5

| ool [ee

Machine 1 Machine 2 Machine 3

Figure 1: A distributed waits-for graph with replicated
nodes and partitioned edges. There are two cycles here:
one local to Machine 1 ({T1,T;}), and one that spans Ma-
chines 1 and 2 ({Ty, T3}).

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?

Example 2 - Distributed Garbage Collection

Can we avoid coordination?

Example 2 - Distributed Garbage Collection

Machine 1 Machine 2 Machine 3

Figure 2: A distributed object reference graph with re-
mote references (dotted arrows). The fact that object O3
is reachable from Root can be established without any in-
formation from Machine 3. Objects Os and O are garbage,
which can only be established by knowing the entire
graph.

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?

Example 2 - Distributed Garbage Collection

® Goal is to detect objects that are disconnected from “root”. ! .

Machine 1 Machine 2 Machine 3

® Again, references to objects can span multiple machines.

° - . .
A machine’s local view contains only a subset of edges of the Figure 2: A distributed object reference graph with re-

mote references (dotted arrows). The fact that object O3

global reference graph. is reachable from Root can be established without any in-

formation from Machine 3. Objects O5 and O4 are garbage,

® As before, machines exchange their local copies of edges to Whic}l: can only be established by knowing the entire
graph.

accumulate information.
From Keeping CALM: When Distributed Consistency Is Easy

® Eventually, all machines will have a consistent view of the

global reference graph.

Can we avoid coordination?

Example 2 - Distributed Garbage Collection

® However, if at any point, a machine detects that a local object ! .

Machine 1 Machine 2 Machine 3

is disconnected from the root, can it declare that this is

garbage and deallocate it?

Figure 2: A distributed object reference graph with re-

® Can a local garbage collector make decisions to deallocate mote references (dotted arrows). The fact that object Os
is reachable from Root can be established without any in-
local objects without complete view of the global reference formation from Machine 3. Objects Os and O are garbage,
which can only be established by knowing the entire
graph? Can we avoid coordination? graph.
® \What about race conditions? Can information we don't yet From Keeping CALM: When Distributed Consistency Is Easy

know cause us to change our mind?

Can we avoid coordination?

Example 2 - Distributed Garbage Collection

® |n this case, we need to coordinate! ! .

Machine 1 Machine 2 Machine 3

® The reason for this is that a decision made on incomplete

information can be invalidated by arrival of new information.
Figure 2: A distributed object reference graph with re-

mote references (dotted arrows). The fact that object O3
is reachable from Root can be established without any in-
formation from Machine 3. Objects Os and O are garbage,
state. which can only be established by knowing the entire
graph.

® The local state is not an under-approximation of the global

From Keeping CALM: When Distributed Consistency Is Easy

Can we avoid coordination?

Question: What is the family of problems that can be
consistently computed in a distributed fashion without
coordination, and what problems lie outside that

family?

[cs.DC] 26 Jan 2019

Keeping CALM: When Distributed Consistency is Easy

Joseph M. Hellerstein
hellerstein@berkeley.edu
UC Berkeley

1 INTRODUCTION

Nearly all of the software we use today is part of a distributed
system. Apps on your phone participate with hosted services in
the cloud; together they form a distributed system. Hosted services
themselves are massively distributed systems, often running on
machines spread across the globe. “Big data” systems and enterprise
databases are distributed across many machines. Most scientific
computing and machine learning systems work in parallel across
multiple processors. Even legacy desktop operating systems and

ppli like spreadsheets and word p s are tightly inte-
grated with distributed backend services.

Distributed systems are tricky, so their ubiquity should worry
us. Multiple unreliable machines are running in parallel, sending
messages to each other across network links with arbitrary delays.
How can we be confident that our programs do what we want
despite this chaos?

This problem is urgent, but it is not new. The traditional an-
swer has been to reduce this complexity with memory consistency
guarantees: assurances that the accesses to memory (heap vari-
ables, database keys, etc) occur in a controlled fashion. However,

Peter Alvaro
palvaro@cs.ucsc.edu
UC Santa Cruz

simple systems with narrow APIs. Can we avoid coordination more
generally, as Hamilton recommends? When?

Surprisingly, this was an open question in distributed systems
until relatively recently, due to a narrow focus on storage semantics.
‘We can do better by moving up the stack, setting aside incidental
storage details and considering program semantics more holistically.
Before we delve into details, we begin with intuition on what is
desirable and what is possible.

1.2 Stay in Your Lane: The Perfect Freeway

As an analogy, consider driving on a highway during rush hour. If
each car would drive forward independently in its lane at the speed
limit, everything would be fine: the capacity of the highway could
be fully exploited. Unfortunately, there always seem to be drivers
who have other places to go than forward! To prevent two cars
from being in the same place at the same time, we drivers engage
in various forms of coordination when entering traffic, changing
lanes, coming to intersections, etc. We adhere to formal protocols,
including traffic lights and stop signs. We also frequently engage in
ad hoc forms of coordination with neighboring cars by using turn

Can we avoid coordination?

Theorem 1: Consistency As Logical Monotonicity (CALM). A

program has a consistent,

coordination-free distributed

implementation if and only if it is monotonic.

[cs.DC] 26 Jan 2019

Keeping CALM: When Distributed Consistency is Easy

Joseph M. Hellerstein
hellerstein@berkeley.edu
UC Berkeley

1 INTRODUCTION

Nearly all of the software we use today is part of a distributed
system. Apps on your phone participate with hosted services in
the cloud; together they form a distributed system. Hosted services
themselves are massively distributed systems, often running on
machines spread across the globe. “Big data” systems and enterprise
databases are distributed across many machines. Most scientific
computing and machine learning systems work in parallel across
multiple processors. Even legacy desktop operating systems and

ppli like spreadsheets and word p s are tightly inte-
grated with distributed backend services.

Distributed systems are tricky, so their ubiquity should worry
us. Multiple unreliable machines are running in parallel, sending
messages to each other across network links with arbitrary delays.
How can we be confident that our programs do what we want
despite this chaos?

This problem is urgent, but it is not new. The traditional an-
swer has been to reduce this complexity with memory consistency
guarantees: assurances that the accesses to memory (heap vari-
ables, database keys, etc) occur in a controlled fashion. However,

Peter Alvaro
palvaro@cs.ucsc.edu
UC Santa Cruz

simple systems with narrow APIs. Can we avoid coordination more
generally, as Hamilton recommends? When?

Surprisingly, this was an open question in distributed systems
until relatively recently, due to a narrow focus on storage semantics.
‘We can do better by moving up the stack, setting aside incidental
storage details and considering program semantics more holistically.
Before we delve into details, we begin with intuition on what is
desirable and what is possible.

1.2 Stay in Your Lane: The Perfect Freeway

As an analogy, consider driving on a highway during rush hour. If
each car would drive forward independently in its lane at the speed
limit, everything would be fine: the capacity of the highway could
be fully exploited. Unfortunately, there always seem to be drivers
who have other places to go than forward! To prevent two cars
from being in the same place at the same time, we drivers engage
in various forms of coordination when entering traffic, changing
lanes, coming to intersections, etc. We adhere to formal protocols,
including traffic lights and stop signs. We also frequently engage in
ad hoc forms of coordination with neighboring cars by using turn

Can we avoid coordination?

Theorem 1: Consistency As Logical Monotonicity (CALM). A
program has a consistent, coordination-free distributed

implementation if and only if it is monotonic.

“Reasoners draw conclusions defeasibly when they reserve the right to
retract them in the light of further information”
Non-monotonic Logic, Stanford Encyclopedia of Philosophy

(https://plato.stanford.edu/entries/logic-nonmonotonic/)

[cs.DC] 26 Jan 2019

Keeping CALM: When Distributed Consistency is Easy

Joseph M. Hellerstein
hellerstein@berkeley.edu
UC Berkeley

1 INTRODUCTION

Nearly all of the software we use today is part of a distributed
system. Apps on your phone participate with hosted services in
the cloud; together they form a distributed system. Hosted services
themselves are massively distributed systems, often running on
machines spread across the globe. “Big data” systems and enterprise
databases are distributed across many machines. Most scientific
computing and machine learning systems work in parallel across
multiple processors. Even legacy desktop operating systems and

pplications like spreadsheets and word p are tightly inte-
grated with distributed backend services.

Distributed systems are tricky, so their ubiquity should worry
us. Multiple unreliable machines are running in parallel, sending
messages to each other across network links with arbitrary delays.
How can we be confident that our programs do what we want
despite this chaos?

This problem is urgent, but it is not new. The traditional an-
swer has been to reduce this complexity with memory consistency
guarantees: assurances that the accesses to memory (heap vari-
ables, database keys, etc) occur in a controlled fashion. However,

Peter Alvaro
palvaro@cs.ucsc.edu
UC Santa Cruz

simple systems with narrow APIs. Can we avoid coordination more
generally, as Hamilton recommends? When?

Surprisingly, this was an open question in distributed systems
until relatively recently, due to a narrow focus on storage semantics.
‘We can do better by moving up the stack, setting aside incidental
storage details and considering program semantics more holistically.
Before we delve into details, we begin with intuition on what is
desirable and what is possible.

1.2 Stay in Your Lane: The Perfect Freeway

As an analogy, consider driving on a highway during rush hour. If
each car would drive forward independently in its lane at the speed
limit, everything would be fine: the capacity of the highway could
be fully exploited. Unfortunately, there always seem to be drivers
who have other places to go than forward! To prevent two cars
from being in the same place at the same time, we drivers engage
in various forms of coordination when entering traffic, changing
lanes, coming to intersections, etc. We adhere to formal protocols,
including traffic lights and stop signs. We also frequently engage in
ad hoc forms of coordination with neighboring cars by using turn

https://plato.stanford.edu/entries/logic-nonmonotonic/

Can we avoid coordination?

Theorem 1: Consistency As Logical Monotonicity (CALM). A
program has a consistent, coordination-free distributed

implementation if and only if it is monotonic.

Definition 1: A program P is monotonic if for any input sets S,T

whereS S T, P(S) < P(T).

[cs.DC] 26 Jan 2019

Keeping CALM: When Distributed Consistency is Easy

Joseph M. Hellerstein
hellerstein@berkeley.edu
UC Berkeley

1 INTRODUCTION

Nearly all of the software we use today is part of a distributed
system. Apps on your phone participate with hosted services in
the cloud; together they form a distributed system. Hosted services
themselves are massively distributed systems, often running on
machines spread across the globe. “Big data” systems and enterprise
databases are distributed across many machines. Most scientific
computing and machine learning systems work in parallel across
multiple processors. Even legacy desktop operating systems and

ppli like spreadsheets and word p s are tightly inte-
grated with distributed backend services.

Distributed systems are tricky, so their ubiquity should worry
us. Multiple unreliable machines are running in parallel, sending
messages to each other across network links with arbitrary delays.
How can we be confident that our programs do what we want
despite this chaos?

This problem is urgent, but it is not new. The traditional an-
swer has been to reduce this complexity with memory consistency
guarantees: assurances that the accesses to memory (heap vari-
ables, database keys, etc) occur in a controlled fashion. However,

Peter Alvaro
palvaro@cs.ucsc.edu
UC Santa Cruz

simple systems with narrow APIs. Can we avoid coordination more
generally, as Hamilton recommends? When?

Surprisingly, this was an open question in distributed systems
until relatively recently, due to a narrow focus on storage semantics.
‘We can do better by moving up the stack, setting aside incidental
storage details and considering program semantics more holistically.
Before we delve into details, we begin with intuition on what is
desirable and what is possible.

1.2 Stay in Your Lane: The Perfect Freeway

As an analogy, consider driving on a highway during rush hour. If
each car would drive forward independently in its lane at the speed
limit, everything would be fine: the capacity of the highway could
be fully exploited. Unfortunately, there always seem to be drivers
who have other places to go than forward! To prevent two cars
from being in the same place at the same time, we drivers engage
in various forms of coordination when entering traffic, changing
lanes, coming to intersections, etc. We adhere to formal protocols,
including traffic lights and stop signs. We also frequently engage in
ad hoc forms of coordination with neighboring cars by using turn

Can we avoid coordination?

e Remember - the need to coordinate arises from an intrinsic need to gather missing information.

Can we avoid coordination?

e Remember - the need to coordinate arises from an intrinsic need to gather missing information.
e As aresult, monotonic programs are “safe” in the face of missing information and can proceed without

coordination.

Can we avoid coordination?
e Remember - the need to coordinate arises from an intrinsic need to gather missing information.

e As aresult, monotonic programs are “safe” in the face of missing information and can proceed without

coordination.

e Non-monotonic programs on the other hand tend to “change their mind” in the face of new information,

they need to ensure they know the global state before taking any decisions.

Can we avoid coordination?

e Remember - the need to coordinate arises from an intrinsic need to gather missing information.

e As aresult, monotonic programs are “safe” in the face of missing information and can proceed without
coordination.

e Non-monotonic programs on the other hand tend to “change their mind” in the face of new information,
they need to ensure they know the global state before taking any decisions.

e Additionally, because non-monotonicity leads to “change in mind”, they are also sensitive to the order in
which inputs are processed - another intrinsic motivator for coordination. Monotonic programs are

immune to this as well! They only care about the content of inputs, not the order.

Interlude - CRDTs, a primer.

CRDTs

Note: this hopes to be an intuitive introduction to CRDTs, resources for a more concrete and

mathematically sound introduction to CRDTs are linked towards the end!

CRDTs

e Conflict Free Replicated Datatypes.
e These are replicated structures that provide

guarantees to be eventually consistent without

the need for coordination.

Conflict-free Replicated Data Types

Marc Shapiro, Nuno Preguica, Carlos Baquero, Marek Zawirski

» To cite this version:

Marc Shapiro, Nuno Preguica, Carlos Baquero, Marek Zawirski. Conflict-free Replicated Data Types.
SSS 2011 - 13th International Symposium Stabilization, Safety, and Security of Distributed Systems,
Oct 2011, Grenoble, France. pp.386-400, 10.1007/978-3-642-24550-3 29 . hal-00932836

CRDTs

e Conflict Free Replicated Datatypes.

state

e These are replicated structures that provide
guarantees to be eventually consistent without
the need for coordination.

state

® Replicas gossip their state and all become

consistent eventually.

CRDTs

® These are called state-based CRDTs, there’s

state

also something called operation-based CRDTs.
e We will only talk about state-based CRDTs “ X

today to simplify things. ¢ g

state

CRDTs

To understand CRDTs, let’s understand how its APl is defined:

state

state /’ gossip e state

CRDTs

To understand CRDTs, let’s understand how its APl is defined:

state

@® Each function is executed locally.

state /’ gossip e state

CRDTs

state

To understand CRDTs, let’s understand how its APl is defined:

@® Each function is executed locally.

® op: Clients use this to modify the state of the CRDT. Must be 4 »

// \\
. / \
monotonic. / \
/ \
/ \

state V. gossip N state

CRDTs

state
To understand CRDTs, let’s understand how its APl is defined:
@® Each function is executed locally.
® op: Clients use this to modify the state of the CRDT. Must be > »
// \\
. / \
monotonic. % \
/ \
/ b
. / gossip \
® query: Does not modify state, only returns some result that shale / Y SEAL

might depend on state.

CRDTs

To understand CRDTs, let’s understand how its APl is defined:

state

@® Each function is executed locally.

® op: Clients use this to modify the state of the CRDT. Must be
monotonic.
state

® query: Does not modify state, only returns some result that

might depend on state.

® merge: Takes a value, merges it with existing state and

produces new state. Must be Associative, Commutative and

Idempotent (ACI).

CRDTs

merge: Takes avalue, merges it with existing state and produces
new state. Must be Associative, Commutative and Idempotent

(ACI).

If & is the merge function and a, b, c are updates to the CRDT
state:

Associative: a ¢ (b & c) = (a &b) &c
Commutative:a ¢ b = b & a

Idempotent: a &« a = a

state

state

CRDTs

[poﬁato]
CRDT example: a grow-only replicated set of values
® We have a shopping cart that (for now) users can only add
values to. « >
/ \\
/ \
® The contents of this shopping cart are replicated for latency & %
// ‘ \\
/ gossip \

and availability purposes. [potato] j \ [potato]

CRDTs

[poﬁato]
CRDT example: a grow-only replicated set of values
add(ferrari)
® We have a shopping cart that (for now) users can only add
values to. « >
\
i \
/ \
® The contents of this shopping cart are replicated for latency & %
/ X
/ \

and availability purposes. [potato] 5 gossip ', [potato]

CRDTs

CRDT example: a grow-only replicated set of values

[potato, ferraril

® We have a shopping cart that (for now) users can only add

values to. 4 w

® The contents of this shopping cart are replicated for latency / A

gossip

oL \ :
and availability purposes. \ [potato, ferrari]

CRDTs

API for this CRDT:

[potato, ferrari]

® op:add(item T) { adds.insert (item) }

s \\ [potato, ferrari]

CRDTs

API for this CRDT:

[potato, ferrari]

® op:add(item T) { adds.insert (item) }

® query: read() []T { return adds } « »

s AN [potato, ferraril

C R DTS [potato, ferrari]

API for this CRDT:

® op:add(item T) { adds.insert (item) }
® query: read() []T { return adds } « »

® merge: union(item) { adds.union (item) } / \

s AN [potato, ferraril

C R DTS [potato, ferrari]

API for this CRDT:

merge: union (item)

If & = union isthe merge function and x, v, z are additions to
4 X

the set: / %

/ \

/ \
Associative: x & (y & z) = (X & Vv) & z 57 ‘ Y

s AN [potato, ferraril
= {XI Y Z} ‘

Commutative:x ¢ v = v & x = {x, vy} | 8 | - e— e __ >

I[dempotent: x & x = {x}

CRDTs

Mathematicallyy, you can represent this CRDT as:

({x, v, 2}, &)

Figure 2: Hasse diagrams for G-Set and a cardinality counter,
and a monotone function between them (dashed lines).

CRDTs

Mathematicallyy, you can represent this CRDT as:

({x, v, 2}, &)

Figure 2: Hasse diagrams for G-Set and a cardinality counter,
and a monotone function between them (dashed lines).
The only way is up.

Popularity of CRDTs

Popularity of CRDTs

e Used as building blocks by distributed systems developers: Akka, Dynamo, Redis.
e Used by industry - PayPal, League of Legends, FlightTracker (inside Meta).

e Used in collaborative document editing.

Why The Popularity of CRDTs?

Why The Popularity of CRDTs?

e An easy to explain API.

e A promise of formal safety guarantees (eventual convergence) - its attractive to latch onto “guaranteed to
converge, all replicas eventually consistent”

e Helps deal with non-determinism that comes with eventually consistent systems: re-ordering,

duplication, late-arriving updates - ACI merge function handles that!

A Few Gotchas

A Few Gotchas

“guaranteed to converge, all replicas eventually consistent”

® Because CRDTs have become so popular, it starts becoming

simpler to misread what the actual guarantees provided by

CRDTs are.

A Few Gotchas

“guaranteed to converge, all replicas eventually consistent”

® Because CRDTs have become so popular, it starts becoming

simpler to misread what the actual guarantees provided by

CRDTs are.

® This is a storage guarantee. This is not a guarantee that is

provided to readers of the state of CRDTs.

A Few Gotchas

So as a developer, if | wanted to have such guarantees for reading

state as well:

A Few Gotchas

So as a developer, if | wanted to have such guarantees for reading

state as well:

® |understand the system is eventual, I've accepted stale reads.

A Few Gotchas

So as a developer, if | wanted to have such guarantees for reading

state as well:

® |understand the system is eventual, I've accepted stale reads.

® However, if I'm getting the guarantee of no coordination, |

expect my reads to never go back in time, otherwise I'll have to

coordinate.

A Few Gotchas

So as a developer, if | wanted to have such guarantees for reading

state as well:

® |understand the system is eventual, I've accepted stale reads.

® However, if I'm getting the guarantee of no coordination, |

expect my reads to never go back in time, otherwise I'll have to

coordinate.

® Because | am not coordinating, | also expect no anomalies in

my state - all conflicts are handled. The system is basically

equivalent to some sequential execution.

A Few Gotchas

Wait...

Am | expecting sequential consistency?

How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs

LESLIE LAMPORT

Abstract—Many large sequential computers execute operations in
a different order than is specified by the program. A correct execution
is achieved if the results produced are the same as would be produced
by executing the program steps in order. For a multiprocessor
computer, such a correct execution by each processor does not
guarantee the correct execution of the entire program. Additional
conditions are given which do guarantee that a computer correctly
executes multiprocess programs.

Index Terms—Computer design, concurrent computing, hardware
correctness, multiprocessing, parallel processing.

A high-speed processor may execute operations in a different
order than is specified by the program. The correctness of the
execution is guaranteed if the processor satisfies the following
condition: the result of an execution is the same as if the opera-
tions had been executed in the order specified by the program. A
processor satisfying this condition will be called sequential. Con-
sider a computer composed of several such processors accessing a
common memory. The customary approach to designing and
proving the correctness of multiprocess algorithms [1]-[3] for
such a computer assumes that the following condition is satisfied:
the result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in
the order specified by its program. A multiprocessor satisfying this
condition will be called sequentially consistent. The sequentiality

Manuscript received September 28, 1977; revised May 8, 1979.
The author is with the Computer Science Laboratory, SRI International, Merls
Park, CA 94025.

A Few Gotchas

However, CRDTs by themselves provide no such guarantees to readers.

A Few Gotchas

[potato, ferrari]

s \\ [potato, ferrari]

A Few Gotchas

[potato, ferrari]

® What if | decide that a Ferrari is probably not the best
purchase and | want to remove it from my cart?

® Deletions from a set violate monotonicity, we are going back « »
on our state of world!

s AN [potato, ferraril

A Few Gotchas

[potato, ferraril

(1

o
nn

® What if | decide that a Ferrari is probably not the best
purchase and | want to remove it from my cart?

® Deletions from a set violate monotonicity, we are going back
on our state of world!

® Another grow-only set but for deletions? P [potato, ferrari]

A Few Gotchas

[potato, ferraril

(1

o
nn

® What if | decide that a Ferrari is probably not the best
del(ferrari)

purchase and | want to remove it from my cart?

® Deletions from a set violate monotonicity, we are going back

on our state of world!

® Another grow-only set but for deletions? P [potato, ferrari]

A Few Gotchas

[potato, ferrari]
[ferrari]

o
nn

® What if | decide that a Ferrari is probably not the best

purchase and | want to remove it from my cart?
® Deletions from a set violate monotonicity, we are going back
on our state of world!

® Another grow-only set but for deletions? p [potato, ferrari]

[ferrari]

A Few Gotchas

API for this CRDT:

[potato, ferrari]
[ferrari]

o
nn

[potato, ferrari]
[ferrari]

A Few Gotchas

[potato, ferrari]

o
nn

n = [ferrari]
API for this CRDT:
op:
add(item T) { adds.insert (item) }
del (item T) { dels.insert (item) }

4 %
query:
read () [1T {
p = [potato, ferrari]
return adds.difference(dels) n = [ferraril

}
merge:

union (addItem, delItem) {
adds.union (addItem)
dels.union(dellItem)

A Few Gotchas

p = [potato, ferrari]
n = [ferrari]
® CRDTs provide mathematically sound guarantees for
convergence.
® Orinother words, they provide guarantees for liveness.
« %
/ \
@ But this guarantees is only for updates. CRDTs provide no APIs 7 %
e, p = [potato, ferrari]
or guarantees for visibility into the state (reads). i = [feirari]

® No guarantees for safety when reading state!

A Few Gotchas

p = [potato, ferrari]
n = [ferrari]
® CRDTs provide mathematically sound guarantees for
convergence.
® Orinother words, they provide guarantees for liveness.
« %
/ \
@ But this guarantees is only for updates. CRDTs provide no APIs 7 %
e, p = [potato, ferrari]
or guarantees for visibility into the state (reads). i = [feirari]

® No guarantees for safety when reading state!

A Few Gotchas

p = [potato, ferraril

® CRDTs provide mathematically sound guarantees for n = [ferrari]
convergence.

® Orinother words, they provide guarantees for liveness.

@ But this guarantees is only for updates. CRDTs provide no APIs ,‘ b\\

or guarantees for visibility into the state (reads).
[potato, ferrari]
[ferrari]

® No guarantees for safety when reading state!

A Few Gotchas

p= [potatoi ferrari]
® CRDTs provide mathematically sound guarantees for n = [fercari]
convergence.
® Orinother words, they provide guarantees for liveness.
. . . « %
@ But this guarantees is only for updates. CRDTs provide no APIs / \

or guarantees for visibility into the state (reads). [potato, ferrari]

[ferrari]

® No guarantees for safety when reading state!

A Few Gotchas

[potato, ferrari]
[ferrari]

o
nn

® How about we wait for all updates to arrive before processing

a checkout (read) request?

[potato, ferrari]
[ferrari]

A Few Gotchas

[potato, ferrari]
[ferrari]

o
nn

® How about we wait for all updates to arrive before processing

a checkout (read) request?

® Need to know what updates are present on other nodes.

[potato, ferrari]
[ferrari]

A Few Gotchas

[potato, ferrari]
[ferrari]

o
nn

® How about we wait for all updates to arrive before processing

a checkout (read) request?

® Need to know what updates are present on other nodes.

® Maybe we can ask other nodes?

[potato, ferrari]
[ferrari]

A Few Gotchas

[potato, ferrari]
[ferrari]

o
nn

® How about we wait for all updates to arrive before processing

a checkout (read) request?

® Need to know what updates are present on other nodes.

® Maybe we can ask other nodes?

[potato, ferrari]
[ferrari]

® Holdon...

We're back in coordination land!

A Few Gotchas

[potato, ferrari]
[ferrari]

o
nn

® CRDTs are guaranteed to be consistent as long as they are not

observed.

[potato, ferrari]
[ferrari]

A Few Gotchas

p = [potatoi ferrari]
® CRDTs are guaranteed to be consistent as long as they are not n = [fercari]
observed.
4 %
// \\
CRDTs provide Schrodinger Consistency Guarantees o Y

[potato, ferrari]
[ferrari]

)
s

Few Gotchas

® Why is that the case? Why did we end up back in coordination

land?

® Reads are ANNOYING!

® Reads don’t usually commute with other operations.

del (ferrari) -> {potato} - {ferrari}

{potato, ferrari} - {} -> del(ferrari)

Building on Quicksand

Pat Helland
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

PHelland @Microsoft.com

ABSTRACT

Reliable systems have always been built out of unreliable
components [1]. Early on, the reliable components were small
such as mirrored disks or ECC (Error Correcting Codes) in core
memory. These systems were designed such that failures of these
small ‘were to the ication. Later, the
size of the unreliable components grew larger and semantic
challenges crept into the application when failures occurred.

Fault tolerant algorithms comprise a sct of idempotent sub-
algorithms. Between these idempotent sub-algorithms, state is

Dave Campbell
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

DavidC@Microsoft.com

Keywords
Fault Tolerance, Eventual Consistency, Reconciliation,
Loose Coupling, Transactions

1. Introduction

There is an interesting connection between fault tolerance,
offlineable systems, and the need for application-based eventual
consistency. As we attempt to run our large scale applications
spread across many systems, we cannot afford the latency to wait
for a backup system to remain in synch with the system actually
ing the work. This causes the server systems to look

sent across the failure ¢ fes of the
The failure of an unreliable component can then be tolerated as a
takeover by a backup, which uses the last known state and drives
forward with a retry of the idempotent sub-algorithm. Classically,
this has been done in a linear fashion (i.c. one step at a time).

As the ity of the grows (from a
mirrored disk to a system to a data center), the latency to
communicate with a backup becomes unpalatable. This leads to a
more relaxed model for fault tolerance. The primary system will
acknowledge the work request and its actions without waiting to
ensure that the backup is notified of the work. This improves the
responsiveness of the system because the user is not delayed
behind a slow interaction with the backup.

There are two implications of asynchronous state capture:

1) Everything promised by the pri is probabilistic. There is
always a chance that an untimely failure shortly afler the
promise results in a backup proceeding without knowledge of

the commitment. Hence, nothing is guaranteed!
: ot s A Cimnn

increasingly like offlineable client applications in that they do not
know the authoritative truth. In turn, these server-based
applications are designed to record their intentions and allow the
work to interleave and flow across the replicas. In a properly
designed application, this results in system behavior that is
acceptable to the business while being resilient to an increasing
number of system failures.

This paper starts by examining the concepts of fault tolerance and
posits an abstraction for thinking about fault tolerant systems.
Next, section 3 examines how fault tolerant systems have
historically provided the ability to transparently survive failures
without special applicati ideration by using

checkpointing to send the application state to a backup. In section
4, we begin to examine what happens when we cannot afford the
latency i with the inting of state to
the backup and, instead, allow the checkpointing of state to be
asynchronous. Section 5 examines in much more depth the ways
in which an application must be modified to be true to its

A Few Gotchas

® Why is that the case? Why did we end up back in coordination

land?

® Reads are ANNOYING!

® Reads don’t usually commute with other operations.

del (ferrari) -> {potato,

{potato, ferrari}

ferrari} - {ferrari}

{1

-> del (ferrari)

We cannot reorder set difference (read ())!

Meaning we need to synchronize access.

Leading to need for coordination.

| =

Building on Quicksand

Pat Helland
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

PHelland @Microsoft.com

ABSTRACT

Reliable systems have always been built out of unreliable
components [1]. Early on, the reliable components were small
such as mirrored disks or ECC (Error Correcting Codes) in core
memory. These systems were designed such that failures of these
small ‘were to the ication. Later, the
size of the unreliable components grew larger and semantic
challenges crept into the application when failures occurred.

Fault tolerant algorithms comprise a set of idempotent sub-
algorithms. Between these idempotent sub-algorithms, state is

Dave Campbell
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

DavidC@Microsoft.com

Keywords
Fault Tolerance, Eventual Consistency, Reconciliation,
Loose Coupling, Transactions

1. Introduction

There is an interesting connection between fault tolerance,
offlineable systems, and the need for application-based eventual
consistency. As we attempt to run our large scale applications
spread across many systems, we cannot afford the latency to wait
for a backup system to remain in synch with the system actually
ing the work. This causes the server systems to look

sent across the failure ¢ fes of the
The failure of an unreliable component can then be tolerated as a
takeover by a backup, which uses the last known state and drives
forward with a retry of the idempotent sub-algorithm. Classically,
this has been done in a linear fashion (i.e. one step at a time).

As the ity of the grows (from a
mirrored disk to a system to a data center), the latency to
communicate with a backup becomes unpalatable. This leads to a
more relaxed model for fault tolerance. The primary system will
acknowledge the work request and its actions without waiting to
ensure that the backup is notified of the work. This improves the
responsiveness of the system because the user is not delayed
behind a slow interaction with the backup.

There are two implications of asynchronous state capture:

1) Everything promised by the primary is probabilistic. There is
always a chance that an untimely failure shortly afler the
promise results in a backup proceeding without knowledge of

the commitment. Hence, nothing is guaranteed!
™o bl

increasingly like offlineable client applications in that they do not
know the authoritative truth. In turn, these server-based
applications are designed to record their intentions and allow the
work to interleave and flow across the replicas. In a properly
designed application, this results in system behavior that is
acceptable to the business while being resilient to an increasing
number of system failures.

This paper starts by examining the concepts of fault tolerance and
posits an abstraction for thinking about fault tolerant systems.
Next, section 3 examines how fault tolerant systems have
historically provided the ability to transparently survive failures
without special applicati ideration by using

checkpointing to send the application state to a backup. In section
4, we begin to examine what happens when we cannot afford the
latency i with the inting of state to
the backup and, instead, allow the checkpointing of state to be
asynchronous. Section 5 examines in much more depth the ways
in which an application must be modified to be true to its

A Few Gotchas

® [f we can somehow get that read to commute, we won't have

to coordinate.

Building on Quicksand

Pat Helland
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

PHelland @Microsoft.com

ABSTRACT

Reliable systems have always been built out of unreliable
components [1]. Early on, the reliable components were small
such as mirrored disks or ECC (Error Correcting Codes) in core
memory. These systems were designed such that failures of these
small ‘were to the ication. Later, the
size of the unreliable components grew larger and semantic
challenges crept into the application when failures occurred.

Fault tolerant algorithms comprise a set of idempotent sub-
algorithms. Between these idempotent sub-algorithms, state is

Dave Campbell
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

DavidC@Microsoft.com

Keywords
Fault Tolerance, Eventual Consistency, Reconciliation,
Loose Coupling, Transactions

1. Introduction

There is an interesting connection between fault tolerance,
offlineable systems, and the need for application-based eventual
consistency. As we attempt to run our large scale applications
spread across many systems, we cannot afford the latency to wait
for a backup system to remain in synch with the system actually
ing the work. This causes the server systems to look

sent across the failure ¢ fes of the
The failure of an unreliable component can then be tolerated as a
takeover by a backup, which uses the last known state and drives
forward with a retry of the idempotent sub-algorithm. Classically,
this has been done in a linear fashion (i.c. one step at a time).

As the ity of the grows (from a
mirrored disk to a system to a data center), the latency to
communicate with a backup becomes unpalatable. This leads to a
more relaxed model for fault tolerance. The primary system will
acknowledge the work request and its actions without waiting to
ensure that the backup is notified of the work. This improves the
responsiveness of the system because the user is not delayed
behind a slow interaction with the backup.

There are two implications of asynchronous state capture:

1) Everything promised by the pri is probabilistic. There is
always a chance that an untimely failure shortly afler the
promise results in a backup proceeding without knowledge of

the commitment. Hence, nothing is guaranteed!
: ot s A Cimnn

increasingly like offlineable client applications in that they do not
know the authoritative truth. In turn, these server-based
applications are designed to record their intentions and allow the
work to interleave and flow across the replicas. In a properly
designed application, this results in system behavior that is
acceptable to the business while being resilient to an increasing
number of system failures.

This paper starts by examining the concepts of fault tolerance and
posits an abstraction for thinking about fault tolerant systems.
Next, section 3 examines how fault tolerant systems have
historically provided the ability to transparently survive failures
without special applicati ideration by using

checkpointing to send the application state to a backup. In section
4, we begin to examine what happens when we cannot afford the
latency i with the inting of state to
the backup and, instead, allow the checkpointing of state to be
asynchronous. Section 5 examines in much more depth the ways
in which an application must be modified to be true to its

Few Gotchas

® [f we can somehow get that read to commute, we won't have

to coordinate.

® Here's the thing... the reason it does not commute is because

the output of our query (read ()) is not stable.

Building on Quicksand

Pat Helland
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

PHelland @Microsoft.com

ABSTRACT

Reliable systems have always been built out of unreliable
components [1]. Early on, the reliable components were small
such as mirrored disks or ECC (Error Correcting Codes) in core
memory. These systems were designed such that failures of these
small ‘were to the ication. Later, the
size of the unreliable components grew larger and semantic
challenges crept into the application when failures occurred.

Fault tolerant algorithms comprise a sct of idempotent sub-
algorithms. Between these idempotent sub-algorithms, state is

Dave Campbell
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA

DavidC@Microsoft.com

Keywords
Fault Tolerance, Eventual Consistency, Reconciliation,
Loose Coupling, Transactions

1. Introduction

There is an interesting connection between fault tolerance,
offlineable systems, and the need for application-based eventual
consistency. As we attempt to run our large scale applications
spread across many systems, we cannot afford the latency to wait
for a backup system to remain in synch with the system actually
ing the work. This causes the server systems to look

sent across the failure ¢ fes of the
The failure of an unreliable component can then be tolerated as a
takeover by a backup, which uses the last known state and drives
forward with a retry of the idempotent sub-algorithm. Classically,
this has been done in a linear fashion (i.c. one step at a time).

As the ity of the grows (from a
mirrored disk to a system to a data center), the latency to
communicate with a backup becomes unpalatable. This leads to a
more relaxed model for fault tolerance. The primary system will
acknowledge the work request and its actions without waiting to
ensure that the backup is notified of the work. This improves the
responsiveness of the system because the user is not delayed
behind a slow interaction with the backup.

There are two implications of asynchronous state capture:

1) Everything promised by the pri is probabilistic. There is
always a chance that an untimely failure shortly afler the
promise results in a backup proceeding without knowledge of

the commitment. Hence, nothing is guaranteed!
: ot s A Cimnn

increasingly like offlineable client applications in that they do not
know the authoritative truth. In turn, these server-based
applications are designed to record their intentions and allow the
work to interleave and flow across the replicas. In a properly
designed application, this results in system behavior that is
acceptable to the business while being resilient to an increasing
number of system failures.

This paper starts by examining the concepts of fault tolerance and
posits an abstraction for thinking about fault tolerant systems.
Next, section 3 examines how fault tolerant systems have
historically provided the ability to transparently survive failures
without special applicati ideration by using

checkpointing to send the application state to a backup. In section
4, we begin to examine what happens when we cannot afford the
latency i with the inting of state to
the backup and, instead, allow the checkpointing of state to be
asynchronous. Section 5 examines in much more depth the ways
in which an application must be modified to be true to its

A Few Gotchas

® [f we can somehow get that read to commute, we won't have

to coordinate.

® Here's the thing... the reason it does not commute is because

the output of our query (read ()) is not stable.

® Query can go back on what it outputted to be true at some

point based on the updates it receives.

A Few Gotchas

Deterministi
® [f we can somehow get that read to commute, we won't have o::t t B /
Pu

to coordinate.
[Apphcation]

® Here's the thing... the reason it does not commute is because

the output of our query (read ()) is not stable.

® Query can go back on what it outputted to be true at some
«—» -«
point based on the updates it receives.
® |n other words, without coordination, we output not just stale v

but false information.

A Few Gotchas

® [f outputs of a read query never retract what they have

previously outputted, the query is stable.

® The worst case is you output (arbitrarily) stale information

with new updates, but you will never output false information.

Deterministic /

ou‘bpu‘t

Apphcation

A Few Gotchas

.. . - Deterministic
® Thisis starting to sound familiar... output

[Applica‘bion]

A Few Gotchas

Deterministi
® Thisis starting to sound familiar... O;:‘:"s b /

[Applica‘bion]

MONOTONICITY TO THE RESCUE! ' |

‘\—/

Keep CALM And CRDT On

® Here's the bigidea...

® Along with a monotonic op, if a query is also monotonic, we can provide liveness AND safety guarantees for distributed execution

over CRDTs.

Monotonic queries are queries whose output only ever "grows” with additional updates.

Keep CALM and CRDT On

‘[...] can we develop a query model that makes it possible to precisely

define when execution on a single replica yields consistent results?”

Keep CALM and CRDT On

Shadaj Laddad"
University of California, Berkeley
shadaj@cs.berkeley.edu

Alvin Cheung
University of California, Berkeley
akcheung@cs.berkeley.edu

ABSTRACT

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Conflict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and offer certain eventual
consistency guarantees in a relatively simple object-oriented APL
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
alarger agenda for developing CRDT data stores that let developers
safely and efficiently interact with replicated application state.

PVLDB Reference Format:
Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks,

Conor Power”
University of California, Berkeley
conorpower@cs.berkeley.edu

Natacha Crooks
University of California, Berkeley
ncrooks@cs.berkeley.edu

Mae Milano
University of California, Berkeley
mpmilano@cs.berkeley.edu

Joseph M. Hellerstein
University of California, Berkeley
hellerstein@cs.berkeley.edu

practitioners: Conflict-Free Replicated Data Types [52]. CRDTs are
provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and defining
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTSs, as originally phrased by

Keep CALM and CRDT On

‘[...] can we develop a query model that makes it possible to precisely

define when execution on a single replica yields consistent results?”

@ Helps identify what developers must reason about when using

CRDTs.

Keep CALM and CRDT On

Shadaj Laddad"
University of California, Berkeley
shadaj@cs.berkeley.edu

Alvin Cheung
University of California, Berkeley
akcheung@cs.berkeley.edu

ABSTRACT

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Conflict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and offer certain eventual
consistency guarantees in a relatively simple object-oriented APL
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
alarger agenda for developing CRDT data stores that let developers
safely and efficiently interact with replicated application state.

PVLDB Reference Format:
Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks,

Conor Power”
University of California, Berkeley
conorpower@cs.berkeley.edu

Natacha Crooks
University of California, Berkeley
ncrooks@cs.berkeley.edu

Mae Milano
University of California, Berkeley
mpmilano@cs.berkeley.edu

Joseph M. Hellerstein
University of California, Berkeley
hellerstein@cs.berkeley.edu

practitioners: Conflict-Free Replicated Data Types [52]. CRDTs are
provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and defining
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTSs, as originally phrased by

Keep CALM and CRDT On

‘[...] can we develop a query model that makes it possible to precisely

define when execution on a single replica yields consistent results?”
@ Helps identify what developers must reason about when using
CRDTs.

® Enables building data systems that manage CRDT replication

and query execution, leading to stronger consistency

guarantees.

Keep CALM and CRDT On

Shadaj Laddad" Conor Power” Mae Milano
University of California, Berkeley University of California, Berkeley University of California, Berkeley
shadaj@cs.berkeley.edu conorpower@cs.berkeley.edu mpmilano@cs.berkeley.edu
Alvin Cheung Natacha Crooks Joseph M. Hellerstein

University of California, Berkeley
akcheung@cs.berkeley.edu

ABSTRACT

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Conflict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and offer certain eventual
consistency guarantees in a relatively simple object-oriented APL
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
alarger agenda for developing CRDT data stores that let developers
safely and efficiently interact with replicated application state.

PVLDB Reference Format:
Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks,

University of California, Berkeley
ncrooks@cs.berkeley.edu

University of California, Berkeley
hellerstein@cs.berkeley.edu

practitioners: Conflict-Free Replicated Data Types [52]. CRDTs are
provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and defining
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTSs, as originally phrased by

Towards A Query Model For CRDTs

Proposed query model for CRDTs:

Keep CALM and CRDT On

Shadaj Laddad" Conor Power* Mae Milano
University of California, Berkeley University of California, Berkeley University of California, Berkeley
shadaj@cs.berkeley.edu conorpower@cs.berkeley.edu mpmilano@cs.berkeley.edu
Alvin Cheung Natacha Crooks Joseph M. Hellerstein
University of California, Berkeley University of California, Berkeley University of California, Berkeley
akcheung@cs.berkeley.edu ncrooks@cs.berkeley.edu hellerstein@cs.berkeley.edu
ABSTRACT practitioners: Conflict-Free Replicated Data Types [52]. CRDTs are

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Conflict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and offer certain eventual
consistency guarantees in a relatively simple object-oriented APL
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
alarger agenda for developing CRDT data stores that let developers
safely and efficiently interact with replicated application state.

PVLDB Reference Format:
Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks,

provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and defining
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTSs, as originally phrased by

Towards A Query Model For CRDTs

Proposed query model for CRDTs:

Safety: Queries should be sequentially consistent,

regardless of the replica at which they are evaluated.

Keep CALM and CRDT On

Shadaj Laddad"
University of California, Berkeley
shadaj@cs.berkeley.edu

Alvin Cheung
University of California, Berkeley
akcheung@cs.berkeley.edu

ABSTRACT

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Conflict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and offer certain eventual
consistency guarantees in a relatively simple object-oriented APL
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
alarger agenda for developing CRDT data stores that let developers
safely and efficiently interact with replicated application state.

PVLDB Reference Format:
Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks,

Conor Power”
University of California, Berkeley
conorpower@cs.berkeley.edu

Natacha Crooks
University of California, Berkeley
ncrooks@cs.berkeley.edu

Mae Milano
University of California, Berkeley
mpmilano@cs.berkeley.edu

Joseph M. Hellerstein
University of California, Berkeley
hellerstein@cs.berkeley.edu

practitioners: Conflict-Free Replicated Data Types [52]. CRDTs are
provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and defining
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTSs, as originally phrased by

Towards A Query Model For CRDTs

Proposed query model for CRDTs:

® Safety: Queries should be sequentially consistent,
regardless of the replica at which they are evaluated.
® Efficiency: Queries should be evaluated locally without

coordination whenever possible.

Keep CALM and CRDT On

Shadaj Laddad"
University of California, Berkeley
shadaj@cs.berkeley.edu

Alvin Cheung
University of California, Berkeley
akcheung@cs.berkeley.edu

ABSTRACT

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Conflict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and offer certain eventual
consistency guarantees in a relatively simple object-oriented APL
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
alarger agenda for developing CRDT data stores that let developers
safely and efficiently interact with replicated application state.

PVLDB Reference Format:
Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks,

Conor Power”
University of California, Berkeley
conorpower@cs.berkeley.edu

Natacha Crooks
University of California, Berkeley
ncrooks@cs.berkeley.edu

Mae Milano
University of California, Berkeley
mpmilano@cs.berkeley.edu

Joseph M. Hellerstein
University of California, Berkeley
hellerstein@cs.berkeley.edu

practitioners: Conflict-Free Replicated Data Types [52]. CRDTs are
provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and defining
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTSs, as originally phrased by

Towards A Query Model For CRDTs

Proposed query model for CRDTs:

Safety: Queries should be sequentially consistent,
regardless of the replica at which they are evaluated.
Efficiency: Queries should be evaluated locally without
coordination whenever possible.

Simplicity: The query model should be easy for developers

to reason about.

Keep CALM and CRDT On

Shadaj Laddad" Conor Power” Mae Milano
University of California, Berkeley University of California, Berkeley University of California, Berkeley
shadaj@cs.berkeley.edu conorpower@cs.berkeley.edu mpmilano@cs.berkeley.edu
Alvin Cheung Natacha Crooks Joseph M. Hellerstein

University of California, Berkeley
akcheung@cs.berkeley.edu

ABSTRACT

Despite decades of research and practical experience, developers
have few tools for programming reliable distributed applications
without resorting to expensive coordination techniques. Conflict-
free replicated datatypes (CRDTs) are a promising line of work
that enable coordination-free replication and offer certain eventual
consistency guarantees in a relatively simple object-oriented APL
Yet CRDT guarantees extend only to data updates; observations of
CRDT state are unconstrained and unsafe. We propose an agenda
that embraces the simplicity of CRDTs, but provides richer, more
uniform guarantees. We extend CRDTs with a query model that
reasons about which queries are safe without coordination by ap-
plying monotonicity results from the CALM Theorem, and lay out
alarger agenda for developing CRDT data stores that let developers
safely and efficiently interact with replicated application state.

PVLDB Reference Format:
Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, Natacha Crooks,

University of California, Berkeley
ncrooks@cs.berkeley.edu

University of California, Berkeley
hellerstein@cs.berkeley.edu

practitioners: Conflict-Free Replicated Data Types [52]. CRDTs are
provided as an API by a few commercial platforms (e.g., Enterprise
Redis, Akka, Basho Riak [7, 27, 48]), and have been documented in
use by a number of products and services including PayPal, League
of Legends, and Soundcloud [6, 18, 38]. There is also are a growing
set of open source CRDT packages that have thousands of stars on
GitHub [25, 26, 43], and blog posts explaining CRDTs to developers
in pragmatic, informal terms [13, 49, 57].

The attractiveness of CRDTs lies in their combination of (1) an
easy-to-explain API, and (2) the promise of formal safety guarantees.
Designing a CRDT centers around providing a function to merge
any two replicas, with the requirement that this single function
is associative, commutative and idempotent (ACI), and defining
atomic operations that clients can use to update a replica. From the
user’s perspective, the CRDT’s object-oriented API often mimics a
familiar collection; many of the CRDTs in the literature are simple
adaptations of well-known data types like Sets and Counters.

The formal safety properties of CRDTSs, as originally phrased by

Towards A Query Model For CRDTs

Example queries

ExAMPLE 2 (A BOOLEAN THRESHOLD QUERY OVER A GROW-ONLY
SET). One of the simplest possible CRDTs is the Grow-Only Set (G-
Set) [51]. It is a set S with an operation that can add elements to S
and a merge function that is the set union, S1 U S».

Say we want to determine whether the number of gift card pur-
chases that are over $100 in a set of transactions has exceeded 50 items
(similar to the threshold functions in LVars [29]):

query suspicious_activity() {
if (cardinality([
txn for txn in state
if txn.type == "GIFTCARD" and txn.amount > 100
1 > 50):
return true else ABORT;

Towards A Query Model For CRDTs

Example queries

® Executing query on local replica will always produce a

sequentially consistent result, even without coordination.

ExAMPLE 2 (A BOOLEAN THRESHOLD QUERY OVER A GROW-ONLY
SET). One of the simplest possible CRDTs is the Grow-Only Set (G-
Set) [51]. It is a set S with an operation that can add elements to S
and a merge function that is the set union, S1 U S».

Say we want to determine whether the number of gift card pur-
chases that are over $100 in a set of transactions has exceeded 50 items
(similar to the threshold functions in LVars [29]):

query suspicious_activity() {
if (cardinality([
txn for txn in state
if txn.type == "GIFTCARD" and txn.amount > 100
1 > 50):
return true else ABORT;

Towards A Query Model For CRDTs

Example queries

® Executing query on local replica will always produce a ExAMPLE 2 (A BOOLEAN THRESHOLD QUERY OVER A GROW-ONLY
SET). One of the simplest possible CRDTs is the Grow-Only Set (G-
Set) [51]. It is a set S with an operation that can add elements to S
and a merge function that is the set union, S1 U Sa.

Say we want to determine whether the number of gift card pur-
chases that are over $100 in a set of transactions has exceeded 50 items
(similar to the threshold functions in LVars [29]):

query suspicious_activity() {
if (cardinality([
txn for txn in state
if txn.type == "GIFTCARD" and txn.amount > 100

1 > 50):
return true else ABORT;

sequentially consistent result, even without coordination.

® The true value of the query can never change once observed,

even with additional updates.

Towards A Query Model For CRDTs

Example queries

® Executing query on local replica will always produce a

sequentially consistent result, even without coordination.

® The true value of the query can never change once observed,

even with additional updates.

® |[ocalstate + some updates = global state

EXAMPLE 2 (A BOOLEAN THRESHOLD QUERY OVER A GROW-ONLY
SET). One of the simplest possible CRDTs is the Grow-Only Set (G-
Set) [51]. It is a set S with an operation that can add elements to S
and a merge function that is the set union, S1 U Sa.

Say we want to determine whether the number of gift card pur-
chases that are over $100 in a set of transactions has exceeded 50 items
(similar to the threshold functions in LVars [29]):

query suspicious_activity() {
if (cardinality([
txn for txn in state
if txn.type == "GIFTCARD" and txn.amount > 100
1 > 50):
return true else ABORT;

Towards A Query Model For CRDTs

Example queries

® Executing query on local replica will always produce a

sequentially consistent result, even without coordination.

® The true value of the query can never change once observed,

even with additional updates.

® |[ocalstate + some updates = global state

® Most importantly: you might read stale information, but you

will never read incorrect information.

EXAMPLE 2 (A BOOLEAN THRESHOLD QUERY OVER A GROW-ONLY
SET). One of the simplest possible CRDTs is the Grow-Only Set (G-
Set) [51]. It is a set S with an operation that can add elements to S
and a merge function that is the set union, S1 U Sa.

Say we want to determine whether the number of gift card pur-
chases that are over $100 in a set of transactions has exceeded 50 items
(similar to the threshold functions in LVars [29]):

query suspicious_activity() {
if (cardinality([
txn for txn in state
if txn.type == "GIFTCARD" and txn.amount > 100
1 > 50):
return true else ABORT;

Towards A Query Model For CR

Example queries

p = [potato, ferraril
n = [ferrari]

p = [potato, ferrari]
n=[

ferrari]

Towards A Query Model For CR

Example queries n

[potato, ferrari]
[ferrari]

o
nn

® As we saw, we cannot do away with coordination in this case.

® Stale information is also incorrect information.

[potato, ferrari]
[ferrari]

Towards A Query Model For CRDTs

Remember how we said MONOTONICITY TO THE RESCUE?

Towards A Query Model For CRDTs

® The CALM theorem originally is framed for logic programs.
® [t applies perfectly well to queries over CRDTSs as well!

® \We can define a monotone query as any whose output is monotone with respect to ordering of the CRDT.

Towards A Query Model For CRDTs

® The CALM theorem originally is framed for logic programs.
® [t applies perfectly well to queries over CRDTSs as well!

® \We can define a monotone query as any whose output is monotone with respect to ordering of the CRDT.

“By the CALM Theorem, monotone queries over CRDTs are exactly the queries that only need a local view of the

system to be correct!”

Towards A Query Model For CRDTs

“By the CALM Theorem, monotone queries over CRDTs are exactly the queries that only need a local view of the
system to be correct!”

® Not just that, CALM tells that it is only monotone queries that can satisfy this criteria of coordination avoidance.

® Monotone queries meet all criteria of our good query model.

Towards A Query Model For CRDTs

“By the CALM Theorem, monotone queries over CRDTs are exactly the queries that only need a local view of the
system to be correct!”

@® Just as monotonic functions compose, monotonic queries compose too! Super powerful.

® Field of monotone queries is large - 4 of the 5 relational algebra operators are monotone.

Towards A Query Model For CRDTs

“By the CALM Theorem, monotone queries over CRDTs are exactly the queries that only need a local view of the
system to be correct!”

® \ery simple query model for developers to reason about.
® Understanding definition of CRDTs requires understanding monotonicity for state updates.
® Reasonable for developers to extend this reasoning to queries as well.

® [fSQL isused, monotone queries can be syntactically identified - can leverage developer tooling here.

Towards A Query Model For CRDTs

But what about non-monotone queries? Not all business logic can be expressed monotonically.

Towards A Query Model For CRDTs

But what about non-monotone queries? Not all business logic can be expressed monotonically.

® Answer is simple - coordinate!

® However, coordination as well is improved upon here.

® All update operations commute, you need to order sets of updates, not sequences of them.
® We only care about which updates have arrived, and not their order.

® Contrast with Paxos or Raft, which enforces everyone, everywhere sees the same order no matter what.

Towards A Query Model For CRDTs

TL;DR - if the query you make against a CRDT is monotone, you can execute it safely locally without coordination.

If it is not monotone, you will need to coordinate.

Towards A Query Model For CRDTs

Next step: need to map query model to a practical language.
® Need arich expressions that can manipulate CRDT stat (lattice

structures).

® And syntax that is easily understood and can convey when a

query is monotone or not (to both humans and computers).

Towards A Query Model For CRDTs

Next step: need to map query model to a practical language.
® Need arich expressions that can manipulate CRDT stat (lattice

structures).

® And syntax that is easily understood and can convey when a

query is monotone or not (to both humans and computers).

A dialect of something already familiar to developers: SQL!

Towards A Query Model For CRDTs

Next step: need to map query model to a practical language. You can make use of existing proofs in relational algebra:
® Need arich expressions that can manipulate CRDT stat (lattice

structures).

“If Qis a SELECT-FROM-WHERE query, Q

® And syntax that is easily understood and can convey when a

uery is monotone or not (to both humans and computers). .
auery (puters) is monotone.”

A dialect of something already familiar to developers: SQL!

Towards A Query Model For CRDTs

® This was our APl previously. ® op: Clients use this to modify the state of the CRDT. Must be

® But with a query model and a query language... monotonic.
® query: Does not modify state, only returns some result that
might depend on state.

® merge: Takes a value, merges it with existing state and

produces new state. Must be Associative, Commutative and

Idempotent (ACI).

Towards A Query Model For CRDTs

® This was our APl previously. ® op: Clients use this to modify the state of the CRDT. Must be

® But with a query model and a query language, we no monotonic.

longer have a pre-defined set of queries.

® merge: Takes a value, merges it with existing state and

produces new state. Must be Associative, Commutative and

Idempotent (ACI).

Building Data Management Systems For CRDTs

® With a query model and language, queries are just

interfaces to the actual datastore.

Building Data Management Systems For CRDTs

® With a query model and language, queries are just interfaces to the actual datastore.

“we propose a shift in perspective from an object-oriented view of CRDTs to a database view of them: breaking

CRDTs up into a query model and a data store that separates their logical and physical representations.”

Building Data Management Systems For CRDTs

® Physical representation of data.

Building Data Management Systems For CRDTs

® Physical representation of data.

® Along with our query model.

Building Data Management Systems For CRDTs

® Physical representation of data. ' Application

N - e - - —_—— e e —_——-—

® Along with our query model.

® We have our application which can then communicate

over the network - like any other data store deployed as /7777 /7777 2

aservice.

Building Data Management Systems For CRDTs

® Physical representation of data. ! Application

N - e - - —_—— e e —_——-—

® Along with our query model.

® We have our application which can then communicate

over the network - like any other data store deployed as /7777 /7777 /4

aservice. (Physical store |

“We believe that this approach can both increase the ease of use of CRDTs, by shifting the responsibility of reasoning about consistency
to the store, and improve the efficiency of applications built on CRDTs, since data stores can make optimization decisions based on the

dynamic workload.”

“But | Reallllly Want A Non-monotone Query”

® From our query model - non-monotone queries need

coordination in order to execute safely. Does that mean |
accept my fate of high latencies and coordination

bottlenecks?

“But | Reallllly Want A Non-monotone Query”

® From our query model - non-monotone queries need

coordination in order to execute safely. Does that mean |
accept my fate of high latencies and coordination

bottlenecks?
® Yes but also no. “Pre-fetch” and “pre-coordinate”.
® Sometimes you might just want weakly consistent

systems, don’t bother with coordination in any case here

then.

“But | Reallllly Want A Non-monotone Query”

® Well... I'm not sure | want weak consistency, if only there

was a way for me to analyze just how eventual, this
eventual consistency is and understand how to better

program against it.

“But | Reallllly Want A Non-monotone Query”
 —

® Well... I'm not sure | want weak consistency, if only there

was a way for me to analyze just how eventual, this
eventual consistency is and understand how to better

program against it.

quev

Howcan

be builton

Eventual Consistency Today:

Limitations, Extensions, and Beyond

given no gt

Peter Bailis and Ali Ghodsi, UC Berkeley

of safety?

In a July 2000 conference keynote, Eric Brewer, now VP of engineering at Google and a professor

at the University o
partition tolerance
were architected.®
of the first Internef
on, highly availabl
operation in the p1
Brewer’s conjectur(
Internet services, d
weaker models—tk
Eventual consist
updates are made t
This is a particularly
behavior: the syste
some later point. T
Yet, despite this ap
businesses are buil

Probabilistically Bounded Staleness
for Practical Partial Quorums

Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein, lon Stoica
University of California, Berkeley
{pbailis, shivaram, franklin, hellerstein, istoica}@cs.berkeley.edu

All good ideas arrive by chance.—Max Emst

ABSTRACT

Data store replication results in a fundamental trade-off between
operation latency and data consistency. In this paper, we exam-
ine this trade-off in the context of quorum-replicated data stores.
Under partial, or non-strict quorum replication, a data store waits
for responses from a subset of replicas before answering a query,
without guaranteeing that read and write replica sets intersect. As
deployed in practice, these configurations provide only basic even-
tal consistency guarantees, with no limit to the recency of data
retuned. However, anecdotally, partial quorums are often “good
enough’” for practitioners given their latency benefits. In this work,
we explain why partial quorums are regularly acceptable in prac-
tice, analyzing both the staleness of data they return and the la-
tency benefits they offer. We introduce Probabilistically Bounded
Staleness (PBS) consistency, which provides expected bounds on
staleness with respect to both versions and wall clock time. We de-
rive a closed-form solution for versioned staleness as well as model
real-time staleness for representative Dynamo-style systems under
internet-scale production workloads. Using PBS, we measure the
latency-consistency trade-off for partial quorum systems. We quan-
ivel entually consistent systems f 1

ratum ~onsictant data within tane af millicanande whila affarine

39, 5. However, eventually consistent systems make no guaran-
tees on the staleness (recency in terms of versions written) of data
items returned except that the system will “eventually” return the
most recent version in the absence of new writes [61].

‘This latency-consistency trade-off inherent in distributed data
stores has significant consequences for application design [6]. Low
latency is critical for a large class of applications [56]. For exam-
ple, at Amazon, 100 ms of additional latency resulted in a 1% drop
in sales [44], while 500 ms of additional latency in Google’s search
resulted in a corresponding 20% decrease in traffic [45]. At scale,
increased latencies correspond to large amounts of lost revenue, but
lowering latency has a consistency cost: contacting fewer replicas
for each request typically weakens the guarantees on returned data.
Programs can often tolerate weak consistency by employing care-
ful design patterns such as compensation (e.g., memories, guesses,
and apologies) [33] and by using associative and commutative op-
erations (e.g., timelines, logs, and notifications) [12). However,
potentially unbounded staleness (as in eventual consistency) poses
significant challenges and is undesirable in practice.

1.1 Practical Partial Quorums

In this work, we examine the latency-consistency trade-off in the
context of quorum-replicated data stores. Quorum systems ensure
nd writes to replicas by ensuring

Resources

[Main Paper 1] Keep CALM And CRDT On

[Main Paper 2] Keeping CALM: When Distributed Consistency Is Easy
[Paper] Coordination Avoidance In Database Systems

[Paper] Anna: A KVS For Any Scale

CRDTs

[Original Paper] Conflict Free Replicated Data Types
[Paper] CRDTs: An Overview (thanks to Lewis Campbell [@LewisCTech] for this resource!)

[Talk JACRDT Primer: Defanging Order Theory
[Talk] Strong Eventual Consistency and CRDTs
[Talk] Encapsulating replication, high concurrency and consistency with CRDTs
o [Code] Implementations of a few CRDTSs tested against Jepsen, written in Go
[Paper] How to Make a Correct Multiprocess Program Execute Correctly on a Multiprocessor
[Paper] Building On Quicksand
[ACM Queue] Eventual Consistency Today: Limitations, Extensions, and Beyond
[Talk, Paper] PBS: Probabilistically Bounded Staleness

o O O O O

https://www.vldb.org/pvldb/vol16/p856-power.pdf
https://arxiv.org/pdf/1901.01930.pdf
https://www.vldb.org/pvldb/vol8/p185-bailis.pdf
https://dsf.berkeley.edu/jmh/papers/anna_ieee18.pdf
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
https://arxiv.org/pdf/1806.10254.pdf
https://twitter.com/LewisCTech
https://www.youtube.com/watch?v=OOlnp2bZVRs&t=3s
https://www.microsoft.com/en-us/research/video/strong-eventual-consistency-and-conflict-free-replicated-data-types/
https://www.youtube.com/watch?v=rVRegyQvHqs
https://github.com/MadhavJivrajani/maelstrom-crdts-go
https://lamport.azurewebsites.net/pubs/lamport-how-to-make.pdf
https://arxiv.org/pdf/0909.1788.pdf
https://queue.acm.org/detail.cfm?id=2462076#:~:text=Probabilistically%20Bounded%20Staleness%2C%20or%20PBS,for%20reads%20of%20data%20items.&text=This%20allows%20us%20to%20measure,linearizable%20(or%20regular)%20store.
http://pbs.cs.berkeley.edu/#:~:text=We%20call%20this%20Probabilistically%20Bounded,how%20eventual%20is%20eventual%20consistency%3F

Acknowledgements

Thank you Conor Power (an author of the Keep CALM And CRDT On paper) for helping answer some of my questions, and in great detail!

https://twitter.com/conor_power23

Thank you!

https://nonmonotonic.dev/

https://nonmonotonic.dev/

